




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省项城市中考数学每日一练试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,在中,为的直径,和相切于点E,和相交于点F,已知,,则的长为(
)A. B. C. D.22、为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.873、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、下列事件为必然事件的是()A.明天要下雨B.a是实数,|a|≥0C.﹣3<﹣4D.打开电视机,正在播放新闻5、下列事件是必然发生的事件是()A.在地球上,上抛的篮球一定会下落B.明天的气温一定比今天高C.中秋节晚上一定能看到月亮D.某彩票中奖率是1%,买100张彩票一定中奖一张二、多选题(5小题,每小题3分,共计15分)1、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(
)A. B. C. D.旋转角为2、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(
)A.1 B.3 C.5 D.73、下列关于x的方程的说法正确的是()A.一定有两个实数根 B.可能只有一个实数根C.可能无实数根 D.当时,方程有两个负实数根4、已知点,下面的说法正确的是(
)A.点与点关于轴对称,则点的坐标为B.点绕原点按顺时针方向旋转后到点,则点的坐标为C.点与点关于原点中心对称,则点的坐标为D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为5、关于抛物线y=(x﹣2)2+1,下列说法不正确的是(
)A.开口向上,顶点坐标(﹣2,1)
B.开口向下,对称轴是直线x=2C.开口向下,顶点坐标(2,1)
D.当x>2时,函数值y随x值的增大而增大第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、若点A(m,5)与点B(-4,n)关于原点成中心对称,则m+n=________.2、过年时包了100个饺子,其中有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是_____.3、已知二次函数,当x=_______时,y取得最小值.4、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.5、若某二次函数图象的形状与抛物线y=3x2相同,且顶点坐标为(0,-2),则它的表达式为________.四、简答题(2小题,每小题10分,共计20分)1、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.2、如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.五、解答题(4小题,每小题10分,共计40分)1、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.2、解题与遐想.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?计算验证(1)通过计算求出Rt△ABC的面积.拼图演绎(2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)3、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.4、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.-参考答案-一、单选题1、C【解析】【分析】首先求出圆心角∠EOF的度数,再根据弧长公式,即可解决问题.【详解】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的长.故选:C.【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式.2、C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.4、B【分析】根据事情发生的可能性大小进行判断,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A.明天要下雨,是随机事件,不符合题意;B.a是实数,|a|≥0,是必然事件,符合题意;C.﹣3<﹣4,是不可能事件,不符合题意D.打开电视机,正在播放新闻,是随机事件,不符合题意故选B【点睛】本题考查了必然事件,随机事件,不可能事件,实数的性质,有理数大小比较,掌握相关知识是解题的关键.5、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.故选:A.【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.二、多选题1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,可得旋转角为60°,故D错误;由DE∥BC,易证AD=AE,得出BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;证明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正确;即可得出结果.【详解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,则旋转角为:180°120°=60°,故D错误;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正确;故选:ABC.【考点】本题考查了旋转的性质、等腰三角形的判定与性质、平行线的性质等知识;熟练掌握旋转的性质与等腰三角形的性质是解题的关键.2、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.3、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可.【详解】解:当a=0时,方程整理为解得,∴选项B正确;故选项A错误;当时,方程是一元二次方程,∴∴此时的方程表两个不相等的实数根,故选项C错误;若时,,∴当时,方程有两个负实数根∴选项D正确,故选:BD【考点】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键.4、BD【解析】【分析】A、根据轴对称的性质判断即可;B、根据旋转变换的性质判断即可;C、根据中心对称的性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与点关于原点中心对称,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【考点】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型.5、ABC【解析】【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案.【详解】解:∵y=(x﹣2)2+1,∴抛物线开口向上,对称轴为直线x=2,顶点坐标为(2,1),∴A、B、C不正确;当x>2时,y随x的增大而增大,∴D正确,故选:ABC.【考点】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=中,对称轴为直线x=h,顶点坐标为(h,k).三、填空题1、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.【详解】解:∵点A(m,5)与点B(-4,n)关于原点成中心对称,∴m=4,n=-5,∴m+n=-5+4=-1,故答案为:-1.【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.2、【分析】直接利用概率公式进行计算即可.【详解】解:过年时包了100个饺子,有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是故答案为:【点睛】本题考查的是简单随机事件的概率,熟练的利用概率公式进行计算是解本题的关键;概率的含义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案.【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1.【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.4、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标代入到抛物线解析式得出:所以抛物线解析式为当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出:解得:
所以水面宽度增加到米,比原先的宽度当然是增加了故答案是:【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.5、y=3x2-2或y=-3x2-2【解析】【分析】根据二次函数的图象特点即可分类求解.【详解】二次函数的图象与抛物线y=3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y=3x2-2或y=-3x2-2.故答案为y=3x2-2或y=-3x2-2.【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等.四、简答题1、(1);(2);(3)【解析】【分析】(1)由抛物线的对称轴为直线,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标;(2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式;(3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含m的代数式表达出MN的长度,结合MN=CM即可列出关于m的方程,解方程即可求得对应的m的值,从而得到对应的点Q的坐标.【详解】解:(1)∵对称轴x=,∴点E坐标(,0),令y=0,则有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴点A坐标(﹣1,0).故答案分别为(,0),(﹣1,0).(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴抛物线解析式为y=.(3)如图②中,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵点B的坐标为(4,0),点C的坐标为(0,3),∴直线BC解析式为y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①当N在直线BC上方时,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍弃),∴Q1(,0).②当N在直线BC下方时,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍弃),∴Q2(,0),综上所述:点Q坐标为(,0)或(,0).【考点】本题是一道二次函数与几何及锐角三角函数综合的题,解题的要点是:(1)熟悉二次函数的对称轴方程及二次函数与一元二次方程的关系是解第1小题的关键;(2)由切线的性质得到DE⊥BC,从而得到tan∠OBC=,这样结合已知条件求出a的值是解第2小题的关键;(3)过点M作MF⊥y轴于点F,这样由sin∠BCO=变形把MC用含m的代数式表达出来,再由折叠的性质和MN∥y轴证得MN=MC,这样就可分点N在BC的上方和下方两种情况列出关于m的方程,解方程求得对应的m的值是解第3小题的关键.2、4m【解析】【分析】首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【考点】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.五、解答题1、(1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润﹣税费﹣人工费﹣水电房租费=每天总纯利润,列出方程解答即可.(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x=10时,y=600,当x=11时,y=600﹣20=580,由题意得,,解得.所以销量y与盈利x元之间的关系为y=﹣20x+800,当x=17时,y=460,则每天的毛利润为17×460=7820元;(2)解:设每千克盈利x元,由(1)可得销量为(﹣20x+800)千克,由题意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顾客得到实惠,应选x=15,∴每千克应涨价15﹣10=5元;(3)解:设每千克盈利x元,由题意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2,则每千克应涨价25﹣10=15元或10元.【考点】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.2、(1)S△ABC=20;(2)见解析;(3)见解析.【分析】(1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.【详解】解:(1)如图1,设⊙O的半径为r,连接OE,OF,∵⊙O内切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四边形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省深圳南山区五校联考2026届数学八年级第一学期期末综合测试试题含解析
- 安徽省合肥市中学科大附中2026届数学九年级第一学期期末质量跟踪监视模拟试题含解析
- 新型储能技术压缩空气储能的研究与发展
- 2025股份转让合同范本
- 安徽省阜阳颍东区四校联考2026届数学八年级第一学期期末联考试题含解析
- 中国银行金华市东阳市2025秋招英文面试20问及高分答案
- 工商银行赤峰市红山区2025秋招笔试英语阅读理解题专练30题及答案
- 邮储银行绥化市海伦市2025秋招笔试金融学专练及答案
- 中国银行惠州市博罗县2025秋招半英文面试题库及高分答案
- 邮储银行崇左市江州区2025秋招笔试金融学专练及答案
- 宁夏易制毒管理办法
- 学堂在线 新闻摄影 期末考试答案
- 脑瘫个案护理
- 2025年全国新高考英语II卷试题解析及复习备考策略(课件)
- 课本剧《霸王别姬》剧本【3篇】
- 2025至2030年中国乙肝疫苗行业市场发展模式及未来前景分析报告
- 作文写作(解析版)-2025年中考语文一模试题分类汇编(贵州专用)
- 人工智能技术研发股东出资合作框架协议
- 《资源环境信息技术》课件 - 探索数字化时代的环境保护与可持续资源管理
- 异麦芽糖酐铁注射液-药品临床应用解读
- 制造业制造业供应链管理方案
评论
0/150
提交评论