【《喇叭天线的理论基础概述》1600字】_第1页
【《喇叭天线的理论基础概述》1600字】_第2页
【《喇叭天线的理论基础概述》1600字】_第3页
【《喇叭天线的理论基础概述》1600字】_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

喇叭天线的理论基础概述目录TOC\o"1-3"\h\u17843喇叭天线的理论基础概述 1246751.1矩形口径喇叭天线理论 1221081.2高增益S波段喇叭天线设计思路 463391.2.1喇叭结构参数的尺寸设计 4167191.2.2同轴线结构参数的尺寸设计 41.1矩形口径喇叭天线理论矩形口径喇叭天线也被称为角锥喇叭天线,矩形波导的E面以及H面的两壁相互张开构成了一个矩形口径喇叭天线,E面以及H面扇形喇叭的结合基本上可以作为其辐射特性。用a和b分别表示矩形波导的宽和高,喇叭口径在E面和H面的边长用a1和b1表示,喇叭口径在E面和H面的斜径用ρe和ρh表示,喇叭口径在E面和H面的半径用ρ1和ρ2表示,喇叭上、下两个口径面之间的距离则用Re和Rh表示[14]。如图1.1和1.2所示。图1.1矩形喇叭的E平面图1.2矩形喇叭的H平面喇叭天线和开口波导具有相对容易制作、方便统一标准和机械强度高等优点,但造价较高,体积过大显得笨重。矩形波导通常是由金属材料做成的,里面充满了空气介质,还是封闭的结构,可以降低外界的干扰,辐射损耗小且功率容量大。在矩形波导中,只能传播横电波TE波或横磁波TM波,不能传播横电磁波TEM波,通常我们把TE10模作为主模在矩形波导里传输,这是因为TETE波即Ez=0,我们需要先求Hz,首先分解H(2-1)随后代入波导方程中,Hz∇t2Hz+Kc2H(2-2)该方程可以使用分离变量法求解,即H(2-3)Kc2=Kx2(2-4)得到:d2X(x)dx(2-5)d2Y(y)dy(2-6)最终求得:Hz=H0cos(Kxx+(2-7)第二步我们求Ht→,将上一步求得的HzHt→=−jβKc(2-8)其中:Hx=jβKc(2-9)Hy=jβKc(2-10)最后代入边界条件:Hx(2-11)Hx│(2-12)Hy(2-13)Hy│(2-14)求得:Hx=Hmncos(m(2-15)这是该方程的一个特解,一般解为:Hx=mnHmn(2-16)KcKc=(2-17)只有Kc>0的波才能传播,每一组mn对应一组模式,记为TEmn。m表示场量沿着x轴出现的半驻波个数,n表示场量沿着y轴出现的半驻波个数。最小的Kc对应的模式称为主模,对于TE波来说,m和n不能同时取0,所以主模为TE设定在波导中,只有单模TE10波传播,E(2-18)E(2-19)E(2-20)式中,I(2-21)I(2-22)矩形喇叭的增益可以表示为:G=(2-23)表示矩形喇叭的口径效率。设计最佳增益时,此值约为0.5。a1和b1分别是E面和H面扇形喇叭最佳方向性系数,可以按照理论给出,其中:a(2-24)b(2-25)依据相似三角形关系,可以给出:ρ(2-26)ρ(2-27)对于实际可以制成的喇叭,必须有:R(2-28)由上面5个式子可以推导出:R(2-29)b(2-30)把式(2-12)和式(2-13)代入式(2-6),有:G=(2-31)整理得:a(2-32)设计一个高增益的角锥喇叭天线,天线增益G和矩形馈电波的宽(a)和高(b)如果给出,此时只需要根据公式来确定喇叭天线的其余尺寸:喇叭口径宽度a1、喇叭口径高度b1和喇叭长度Re。1.2高增益S波段喇叭天线设计思路1.2.1喇叭结构参数的尺寸设计在深入研究了矩形口径喇叭天线原理的基础上,需要分析计算喇叭天线相关结构参数并进行尺寸的设计。WR430矩形馈电波导的相关变量已知,波导宽度a为4.30英寸,波导高度b为1.15英寸。把特性阻抗为50Ω的同轴线作为激励信号导入。最终要使得工作在1.4GHz时的喇叭天线增益大于19dB,首先把19dB转换成无量纲值,约为79.4;再计算得到1.4GHz的工作频率所对应的波长λ应为4.92英寸;然后将增益G和波长值代入式(2-32)、式(2-29)和式(2-30),可计算出矩形喇叭的尺寸:喇叭口径宽度a1等于20.50英寸,喇叭口径高度b1等于15.18英寸,喇叭长度Re等于21.47英寸[14]。1.2.2同轴线结构参数的尺寸设计我们把5/4个波长作为波导的长度。波导宽边中心的位置是同轴线的馈电点,把1/4个波长作为馈电点到波导底侧短路板之间的距离,让同轴线外导体与波导侧壁相连接,为了形成电场激励方式,内导体需从波导宽边中心处插入到波导内部场强最大处。同轴线的外导体圆半径设置为0.06英寸,外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论