OWASP:LLM与生成式AI安全解决方案(2025Q1)_第1页
OWASP:LLM与生成式AI安全解决方案(2025Q1)_第2页
OWASP:LLM与生成式AI安全解决方案(2025Q1)_第3页
OWASP:LLM与生成式AI安全解决方案(2025Q1)_第4页
OWASP:LLM与生成式AI安全解决方案(2025Q1)_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

version1.1

RevisionHistory

Revision

Date

Authors

Description

.06

10/15/2024

ScottClinton,Contributors,ReviewerInputs

Re-factorSolutionsLandscapecategories,

1.0

10/15/2024

Contributors,Reviewers

FinalReleaseCandidate

1.1

12/31/2024

ScottClinton,Contributors,ReviewerInputs

NewentriesfromtheOnline

SolutionsLandscapeCatalog,Updatedlayoutand

Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice.All

informationisforgeneralinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.Suchlinksareonlyforconvenience,andOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.

LicenseandUsage

ThisdocumentislicensedunderCreativeCommons,CCBY-SA4.0

Youarefreeto:

●Share—copyandredistributethematerialinanymediumorformat

●Adapt—remix,transform,andbuilduponthematerialforanypurpose,evencommercially.

●Underthefollowingterms:

○Attribution—Youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade.Youmaydosoinanyreasonablemannerbutnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.

○AttributionGuidelines-mustincludetheprojectnameaswellasthenameoftheassetReferenced

■OWASPTop10forLLMs-LLMSecOpsSolutionsLandscape

■OWASPTop10forLLMs-CyberSecuritySolutionandLLMSecOpsLandscapeGuide

●ShareAlike—Ifyouremix,transform,orbuilduponthematerial,youmustdistributeyourcontributionsunderthesamelicenseastheoriginal.

Linktofulllicensetext:

/licenses/by-sa/4.0/legalcode

Page1

Page2

TableofContent

TableofContent2

WhoIsThisDocumentFor?

5

Objectives5

Scope

5

Introduction7

DefiningtheSecuritySolutionsLandscape8

LandscapeConsiderations8

LLMApplicationCategories,SecurityChallenges9

StaticPromptAugmentationApplications10

AgenticApplications11

LLMPlug-ins,Extensions12

ComplexApplications13

LLMDevelopmentandConsumptionModels14

LLMOpsandLLMSecOpsDefined1

5

AQuickOpsPrimer-FoundationforLLMOps15

LLMOpsLifeCycleStages-FoundationforLLMDevSecOps16

Scoping/Planning18

Page3

DataAugmentationandFine-Tuning1

9

ApplicationDevelopmentandExperimentation20

TestandEvaluation21

Release22

Deploy2

3

Operate24

Monitor25

Govern2

6

MappingtotheOWASPTop10forLLMThreatModel27

OWASPTop10forLLMsSolutionsLandscape29

EmergingGenAI/LLM-SpecificSecuritySolutions29

LLM&GenerativeAISecuritySolutions31

SolutionLandscapeMatrixDefinitions32

LandscapeSolutionMatrix33

Acknowledgements43

OWASPTop10forLLMProjectSponsors44

SilverSponsors44

References4

5

ProjectSupporters46

Page4

Letterfromtheleadauthor

Whywecreatedthiscompanionresource

ThecreationofthisdocumentwasinitiatedafterwediscussedasacoreteamthatwhiletheOWASPTop10ListforLLMsandGenerativeAIListprovidedagreatlistofrisksandpotentialmitigations,itfellshortonprovidingthenextlevelofguidance.ThisisinpartduetothestructureofwhatmakesOWASPtop10listsopopular.Thisisbeingconciseandfocusedtohighlightthetoprisksandmitigationforacertainapplicationspace.Thereweremorethanenoughcandidatestogobeyond10,butthefocusof10wefeltessentialtobeabletoensurepracticalfocusedguidance.DeviatingfromthetraditionalOWASPTop10formatwouldbloatthedocumentandimpactitsconciselisting.

Adoptingasolutionsapproachfortheproject

WhiletheTop10listforLLMandGenAIprovidesthelistTop10RiskandMitigations,wefeltitbeneficialgofurtherthantraditionalTop10ListsandtotakeasolutionsapproachandhelpconnecttheTop10RiskstotheopenssourceandcommercialsecuritysolutionsorganizationscouldlooktotohelpaddresstheTop10RisksforLLMsandGenerativeAIinapracticalway.

Inaddition,sincetheGenAIsecuritylandscapeismovingsoquickly,coveringarangeofnewapplication

typesfromstaticpromptaugmentation,throughRAG,pluginsandAgenticAIarchitectures,wesawarangeofnewsecuritysolutionsemergingandwantedtobeabletoprovidearegularlyupdatedresourcetoidentifythesolutionthatcouldbeusedtoaddressthesenewarchitecturesandapplicationriskshighlightedintheTop10forLLMandGenAIList.

Structuringthedocument

Toorganizethesolutions,wechosetoleverageanddocumenttheapplicationtypesandtheLLM/GenAIOpsandSecOpslifecycleandcategoriestoprovideanactionablewaytobothorganizethesolutionsandmap

themtotheTop10forLLMandGenAI,whichwewouldupdatequarterly.Toaccompanythisdocumentwealsodecidedtopublishan

onlinedirectory

.WehopethissolutionguideishelpfulinimplementingyourownstrategyforsecureLLMandGenAIadoptionwithinyourorganization.

-ScottClinton

Co-LeadOWASPTop10forLLMProject

&AI,SecuritySolutionsInitiativeLead

Page5

WhoIsThisDocumentFor?

Thisdocumentistailoredforadiverseaudiencecomprisingdevelopers,AppSecprofessionals,DevSecOpsandMLSecOpsteams,dataengineers,datascientists,CISOs,andsecurityleaderswhoarefocusedon

developingstrategiestosecureLargeLanguageModels(LLMs)andGenerativeAIapplications.ItprovidesareferenceguideofthesolutionsavailabletoaidinsecuringLLMapplications,equippingthemwiththe

knowledgeandtoolsnecessarytobuildrobust,secureAIapplications.

Objectives

ThisdocumentisintendedtobeacompaniontotheOWASPTop10forLargeLanguageModel(LLM)

ApplicationsListandtheCISOCybersecurity&GovernanceChecklist.Itsprimaryobjectiveistoprovidea

referenceresourcefororganizationsseekingtoaddresstheidentifiedrisksandenhancetheirsecurity

programs.Whilenotdesignedtobeanall-inclusiveresource,thisdocumentoffersaresearchedpointof

viewbasedonthetopsecuritycategoriesandemergingthreatareas.Itcapturesthemostimpactfulexistingandemergingcategories.Bycategorizing,defining,andaligningapplicabletechnologysolutionareaswiththeemergingLLMandgenerativeAIthreatlandscape,thisdocumentaimstosimplifyresearcheffortsandserveasasolutionsreferenceguide.

Scope

Thescopeofthisdocumentistocreateashareddefinitionofsolutioncategoryareasthataddressthe

securityoftheLLMandgenerativeAIlifecycle,fromdevelopmenttodeploymentandusage.ThisalignmentsupportstheOWASPTop10ListForLLMsoutcomesandtheCISOCybersecurityandGovernanceChecklist.Toachievethis,thedocumentwillcreateaninitialframeworkandcategorydescriptors,utilizingboth

open-sourcesolutionsandprovidingmechanismsforsolutionproviderstoaligntheirofferingswithspecificcoverageareasasexamplestosupporteachcategory.

Page6

Thedocumentadherestoseveralkeyrulestomaintainitsintegrityandusefulness:

●Vendor-AgnosticandOpenApproach:Itmaintainsaneutralstance,avoidingrecommendationsofonetechnologyoveranother,insteadprovidingcategoryguidancewithchoicesandoptions.

●Straightforward,ActionableGuidance:Thedocumentoffersclear,actionableadvicethatorganizationscanreadilyimplement.

●CoordinatedKnowledgeGraph:Itincludescoordinatedterms,definitions,anddescriptionsforkeyconcepts.

●PointtoExistingStandards:Whereexistingstandardsorsourcesoftruthareavailable,the

documentreferencestheseinsteadofcreatingnewsources,ensuringconsistencyandreliability.

Page7

Introduction

WiththegrowthofGenerativeAIadoption,usage,andapplicationdevelopmentcomesnewrisksthataffecthoworganizationsstrategizeandinvest.Astheserisksevolve,sodoriskmitigationsolutions,technologies,frameworks,andtaxonomies.Toaidsecurityleadersinprioritization,conversationsaboutemerging

technologyandsolutionareasmustbealignedappropriatelytoclearlyunderstoodbusinessoutcomesforAIsecuritysolutions.ThebusinessoutcomesofAIsecuritysolutionsmustbeproperlydefinedtoaidsecurityleadersinbudgeting

Manyorganizationshavealreadyinvestedheavilyinvarioussecuritytools,suchasvulnerabilitymanagementsystems,identityandaccessmanagement(IAM)solutions,endpointsecurity,DynamicApplicationSecurityTesting(DAST),observabilityplatforms,andsecureCI/CD(ContinuousIntegration/ContinuousDeployment)tools,tonameafew.However,thesetraditionalsecuritytoolsmaynotbesufficienttofullyaddressthe

complexitiesofAIapplications,leadingtogapsinprotectionthatmaliciousactorscanexploit.Forexample,traditionalsecuritytoolsmaynotsufficientlyaddresstheuniquedatasecurityandsensitiveinformation

disclosureprotectioninthecontextofLLMandGenAIapplications.Thisincludesbutisnotlimitedtothechallengesofsecuringsensitivedatawithinprompts,outputs,andmodeltrainingdata,andthespecificmitigationstrategiessuchasencryption,redaction,andaccesscontrolmechanisms.

EmergentsolutionslikeLLMFirewalls,AI-specificthreatdetectionsystems,securemodeldeployment

platforms,andAIgovernanceframeworksattempttoaddresstheuniquesecurityneedsofAI/ML

applications.However,therapidevolutionofAI/MLtechnologyanditsapplicationshasdrivenanexplosionofsolutionapproaches,whichhasonlyaddedtotheconfusionfacedbyorganizationsindeterminingwheretoallocatetheirsecuritybudgets.

Page8

DefiningtheSecuritySolutionsLandscape

TherehavebeenmanyapproachestocharacterizingthesolutionslandscapeforLargeLanguageModeltoolsandinfrastructure.InordertodevelopasolutionslandscapethatfocusesonthesecurityofLLMapplicationsacrossthelifecyclefromplanning,development,deployment,andoperation,therearefourkeyareasofinputwehavefocusedontodevelopbothadefinitionforLargeLanguageModelDevSecOPsandrelatedsolutionslandscapecategories.

LandscapeConsiderations

ApplicationTypesandScope-whichimpactsthepeople,processes,andtoolsneededbasedonthecomplexityoftheapplicationandtheLLMenvironment,as-a-service,self-hosted,orcustom-built.

EmergingLLMSecOpsProcess-whilethisisaworkinprogress,manyarelookingtoadaptandadoptexistingDevOpsandMLOpsandassociatedsecuritypractices.WeexpectourdefinitiontoevolveasthedevelopmentprocessesforLLMapplicationsbegintomature.

ThreatandRiskModeling-understandingtherisksposedbyLLMsystems,applicationusage,ormisuselikethoseoutlinedintheOWASPTop10forLLMsandGenerativeAIApplications,arekeytounderstandingwhichsolutionsarebestsuitedtoimprovethesecuritypostureandcombatarangeofattacks.

TrackingEmergingSolutions-manyexistingsecuritysolutionsareadaptingtosupportLLMdevelopmentworkflowsandusecaseshowevergiventhenatureofnewthreatsandevolvingtechnologyandarchitecturesnewtypesofLLM-specificsecuritysolutionswillbenecessary.

Page9

LLMApplicationCategories,SecurityChallenges

OrganizationshavebeenleveragingMachineLearninginapplicationsfordecades.Thisoftenrequired

detailedexpertiseinDataScienceandextensivemodeltraining.GenerativeAIhaschangedthis.Specifically,LargeLanguageModels(LLMs)havemademachinelearningtechnologywidelyaccessible.Theabilityto

dynamicallyinteractinplainlanguagehasopenedthedoorforthecreationofanewclassofdata-driven

applicationsandapplicationintegrations.Furthermore,usageisnolongerlimitedtothehighlyskilledeffortsoftraditionaldevelopersanddatascientists.Pre-trainedmodelsenablenearlyanyonetoperformcomplexcomputationaltasks,regardlessofpriorexposuretoprogrammingorsecurity.Organizationshavebeen

leveragingMachineLearninginapplicationsfordecadesincludingNaturalLanguageProcessing(NLP)modelsthatoftenrequiredetailedexpertiseinDataScienceandextensivemodeltraining.

Withtheadventoftransformerstechnologyenablinggenerativecapabilitiescombinedwiththeeaseofaccessforpre-trainedas-a-servicemodelslikeChatGPTandotheras-a-service,FourmajorcategoriesofLLMApplicationArchitectureemerged;Prompt-centric,AIAgents,Plug-ins/extensions,andcomplex

generativeAIapplicationwheretheLLMplaysakeyroleinalargerapplicationusecase.

(figure:ApplicationCategories&SummaryAttributes)

HavingacommonviewoftypicalLLMapplicationarchitectures,includingagents,models,LLMs,andtheMLapplicationstack,iscrucialfordefiningandaligningtheapplicationstack,securitymodel,andapplicationofferings.Below,wehaveprovidedashortdescriptionofkeycharacteristics,usecases,andsecurity

challengesforeachapplicationcategory.

StaticPromptAugmentationApplications

Theseapplicationsinvolvespecificstaticnaturallanguageinputstoguidethebehaviorofalargelanguagemodel(LLM)towardgeneratingthedesiredoutput.Thistechniqueoptimizestheinteractionbetweenthe

userandthemodelbyfine-tuningthephrasing,context,andinstructionsgiventotheLLM.These

applicationsallowuserstoaccomplishawiderangeoftasksbysimplyrefininghowtheyaskquestionsorprovideinstructions.

KeyCharacteristics

●Humantomodel/modeltohumaninteractionandresponse

●Staticpromptaugmentation

●FlexibilityandCreativity

●SimplicityandAccessibility

●RapidPrototypingandExperimentation

UseCaseExamples

●Experimentation/RapidPrototyping

●ContentGenerationTools

●TextSummarizationApplications

●Question-AnsweringSystems

●LanguageTranslationTools

●ChatbotsandVirtualAssistants

SecurityChallenges

●Prompt-basedapplicationsfacesecurityriskslikepromptinjectionattacksanddataleakagefrompoorlycraftedprompts.Lackofcontextorstatemanagementcanleadtounintendedoutputs,

increasingmisusevulnerability.User-generatedpromptsmaycauseinconsistentorbiasedresponses,riskingcomplianceorethicalviolations.Ensuringpromptintegrity,robustinputvalidation,andsecuringtheLLMenvironmentarecrucialtomitigatetheserisks.

Page10

Page11

AgenticApplications

TheseapplicationsleverageLargeLanguageModels(LLMs)toautonomouslyorsemi-autonomouslyperformtasks,makedecisions,andinteractwithusersorothersystems.Theseagentsaredesignedtoactonbehalfofusers,handlingcomplexprocessesthatofteninvolvemultiplesteps,integrations,andreal-time

decision-making.Theyoperatewithalevelofautonomy,allowingthemtocompletetaskswithoutconstanthumanintervention.

KeyCharacteristics

●AutonomyandDecision-Making

●InteractionwithExternalSystems

●StateManagementandMemory

●ComplexWorkflowAutomation

●Human-AgentCollaboration

UseCaseExamples

●VirtualAssistants

●CustomerSupportBots

●ProcessAutomationAgents

●DataAnalysisandReportingAgents

●IntelligentPersonalizationAgents

●SecurityandComplianceAgents

SecurityChallenges

●Agentapplications,withtheirautonomyandaccesstovarioussystems,mustbecarefullysecuredtopreventmisuse.Theyfacesecuritychallengeslikeunauthorizedaccess,increasedexploitationrisksduetointeractionwithmultiplesystems,andvulnerabilitiesindecision-makingprocesses.If

someonegainscontrolofanautonomousagent,theconsequencescouldbesevere,especiallyin

criticalsystems.Ensuringrobustaccesscontrolsandencryptionmethodstoprotectagainstthisisessential.Ensuringdataintegrityandconfidentialityiscritical,asagentsoftenhandlesensitive

informationitisimportanttosecuredataatallstages,includingat-rest,inmotion,andaccess

throughsecuredAPIs.Theirautonomyalsoposesrisksofunintendedorharmfuldecisionswithoutoversight.Robustauthentication,encryption,monitoring,andfail-safemechanismsareessentialtomitigatethesesecurityrisks.ObservabilityandTraceabilitysolutionsthatmonitortheentire

lifecycleoftheAgents(Design,Development,Deployment,andVisibilityondecision-making)mustbeconsideredtoensurereal-timecorrectionsusingahumans-in-the-loopprocesscanbeenforced.

Page12

LLMPlug-ins,Extensions

Plug-insareextensionsoradd-onsthatintegrateLLMsintoexistingapplicationsorplatforms,enablingthem

toprovideenhancedornewfunctionalities.Plug-instypicallyserveasabridgebetweentheLLMandtheapplication,facilitatingseamlessintegration,suchasaddingalanguagemodeltoawordprocessorfor

grammarcorrectionorintegratingwithcustomerrelationshipmanagement(CRM)systemsforautomatedemailresponses.

WhileitcanbesometimesdifficulttodrawthelinebetweenAgentsandplug-insorextensionswhichareoftencomponentsoflargerapplications,onemeasureisthewayitisdeployedandused.Forexample,a

plug-inwouldbeapre-builtagentdesignedforreusethatyoucallexplicitly,throughanAPI,oraspartofanLLMspluginorextensionframeworkvs.customcoderunninginthebackgroundonaperiodicbasis.

KeyCharacteristics

●ModularityandFlexibility

●SeamlessIntegration

●TaskSpecificFocus

●EaseofDeploymentandUse

●RapidUpdatesandMaintenance

UseCaseExamples

●ContentGenerationTools

●TextSummarizationApplications

SecurityChallenges

●Pluginsinteractingwithsensitivedataorcriticalsystemsmustbecarefullyvettedforsecurity

vulnerabilities.Poorlydesignedormaliciouspluginscancausedatabreachesorunauthorized

access.LLMpluginsfacechallengeslikecompatibilityissues,whereupdatescanintroduce

vulnerabilities,andintegrationwithsensitivesystemsincreasestheriskofdataleaks.Ensuring

secureAPIinteractions,regularupdates,androbustaccesscontrolsiscrucial.Resource-intensivepluginsmaydegradeperformance,riskingexploitation.

Page13

ComplexApplications

ComplexapplicationsaresophisticatedsoftwaresystemsthatdeeplyintegrateLargeLanguageModels

(LLMs)asacentralcomponenttoprovideadvancedfunctionalitiesandsolutions.Theseapplicationsare

characterizedbytheircomprehensivescope,scalability,andtheintegrationofmultipletechnologiesandcomponents.Theyaretypicallydesignedtosolveintricateproblems,ofteninenterpriseenvironments,andrequireextensivedevelopment,engineering,andongoingmaintenanceefforts.

KeyCharacteristics

●Multi-componentarchitecturesaredesignedtoprocesspromptsfromothernon-humansystems.

●Oftenusemultipleintegrations,includingothermodels.

●Multi-ComponentArchitecture

●ScalabilityandPerformance

●AdvancedFeaturesandCustomization

●End-to-EndWorkflowAutomation

UseCaseExamples

●LegalDocumentAnalysisPlatforms

●AutomatedFinancialReportingSystems

●CustomerServicePlatforms

●HealthcareDiagnostics

SecurityChallenges

●ComplexLLMapplicationsfacemajorsecuritychallengesduetotheirintegrationwithmultiple

systemsandextensivedatahandling.TheseincludeAPIvulnerabilities,databreaches,and

adversarialattacks.Thecomplexityincreasestheriskofmisconfigurations,leadingtounauthorizedaccessordataleaks.Managingcomplianceacrosscomponentsisalsodifficult.Robustencryption,accesscontrols,regularsecurityaudits,andcomprehensivemonitoringareessentialtoprotect

theseapplicationsfromsophisticatedthreatsandensuredatasecurity.

Page14

LLMDevelopmentandConsumptionModels

OneofthefirstconsiderationsforanorganizationisdecidingupontheapproachtoleveragingLLM

capabilitiesbasedonthetypeofapplicationandgoalsfortheproject.Today,developershaveachoiceoftwoprimarydeploymentmodelswhenimplementingLLM-basedapplicationsandsystems.

CreateaNewModel:ThetrainingprocessforcustomLLMsisintensive,ofteninvolvingdomain-specificdatasetsandextensivefine-tuningtoachievedesiredperformancelevels.ThisapproachismoreakintoMLOpsbuildingMLmodelsfromthegroundup,withdetaileddataanalysis,collectionformatting,cleaning,andlabeling.Oneofthebenefitsofthisapproachisthatyouknowthelineageandsourceofthedatathemodelisbuiltonandcanattestdirectlytoitsvalidityandfit.However,amajordownsideistheresources,cost,andexpertisenecessarytobuild,train,andverifyamodelthatmeetstheprojectobjectives.CustomLLMsprovidetailoredsolutionsoptimizedforspecifictasksanddomains,offeringhigheraccuracyand

alignmentwithanorganization'sspecificneeds.

ConsumeandCustomizeExistingModels:Pre-trained(foundation)models,whetherself-hostedorofferedasaservice,suchaswithChatGPT,Bertandothersontheotherhandprovideamoreaccessibleentrypointfororganizations.ThesemodelscanbequicklydeployedviaAPIs,allowingforrapidsolutionvalidationand

integrationintoexistingsystems.TheLLMOpsprocessinthisscenarioemphasizescustomizationthrough

fine-tuningwithspecificdatasets,ensuringthemodelmeetstheapplication'suniquerequirements,followedbyrobustdeploymentandmonitoringtomaintainperformanceandsecurity.

Page15

LLMOpsandLLMSecOpsDefined

HavingacommonviewoftypicalLLMapplicationarchitectures,includingagents,models,LLMs,andtheMLapplicationstack,iscrucialfordefiningandaligningtheapplicationstackandsecuritymodel.

(figure:LLMOpsrelatedOperationsProcessforData,MachineLearningandDevOps)

AQuickOpsPrimer-FoundationforLLMOps

DevOps,whichemphasizescollaboration,automation,andcontinuousintegrationanddeployment(CI/CD),haslaidthegroundworkforefficientsoftwaredevelopmentandoperations.Bystreamliningthesoftwaredevelopmentlifecycle,DevOpsenablesrapidandreliabledeliveryofapplications,fosteringacultureof

collaborationbetweendevelopmentandoperationsteams.

DataOpsbuildsonDevOps,wheredatapipelinesaremanagedwithsimilarautomation,versioncontrol,andcontinuousmonitoring,ensuringdataqualityandcomplianceacrossthedatalifecycle.MLOpsalsoextendstheDevOpsprinciplestomachinelearning,focusingontheuniquechallengesofmodeldevelopment,

training,deployment,andmonitoring.UtilizingDevOpsasafoundationensuresthatbothDataOpsandMLOpsinheritarobustinfrastructurethatprioritizesefficiency,scalability,security,andfasterinnovationin

data-drivenandmachinelearningapplications.

MLOpsandDataOpsarefoundationaltoLLMOpsbecausetheyestablishthecriticalprocessesand

infrastructureneededformanagingthelifecycleoflargelanguagemodels(LLMs).DataOpsensuresthatdatapipelinesareefficientlymanaged,fromdatacollectionandpreparationtostorageandretrieval,providing

high-quality,consistent,andsecuredatathatLLMsrelyonfortrainingandinference.MLOpsextendsthese

Page16

principlesbyautomatingandorchestratingthemachinelearninglifecycle,includingmodeldevelopment,training,deployment,andmonitoring.

LLMOpsandMLOps,whilerootedinthesamefoundationalprinciplesoflifecyclemanagement,diverge

significantlyintheirfocusandrequirementsduetothespecificdemandsoflargelanguagemodels(LLMs).

LLMOpsencompassesthecomplexitiesoftraining,deploying,andmanagingLLMs,whichrequiresubstantialcomputationalresourcesandsophisticatedhandling.LLMOpsensurethatLLMsareefficientlyintegrated

intoproductionenvironments,monitoredforperformanceandbiases,andupdatedasneededtomaintain

theireffectiveness.ThisholisticapproachensuresthatthedeploymentandoperationofLLMsare

streamlined,scalable,andsecure,includingconsiderationsfordatavalidationandprovenancetoensurethatthedatausedfortrainingandfine-tuningLLMsistrustworthyandfreefromtampering.Thiscaninclude

techniquesfordataauditingandverification.

LLMOpsLifeCycleStages-Foundation

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论