存储芯片技术的未来 The Future of Memory Chip technology_第1页
存储芯片技术的未来 The Future of Memory Chip technology_第2页
存储芯片技术的未来 The Future of Memory Chip technology_第3页
存储芯片技术的未来 The Future of Memory Chip technology_第4页
存储芯片技术的未来 The Future of Memory Chip technology_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

“TheFutureofMemoryChiptechnology”

February7,2024

Dr.GurtejSSandhu

PrincipalFellowandVicePresident,TechnologyDevelopment

©2022MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.Micron,theMicronlogo,andallotherMicrontrademarksarethe

propertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.

MemoryTechnologyRoadmap

MemoryCostScalingOverTime

LogCost/GB($)

NANDCost/GBDRAMCost/GB

uuuuHistoricalCostTrend

Historical~40%YoYReductions

Historical~30%YoYReductions

New

Memory

Technology

Today

MOORE’S

SLOWING

Physical,Electrical,andMaterialsLimitations

EquipmentCapabilityCostandComplexity

©2015MicronTechnology,Inc.

PersistentChallenge

Product/DevicePerformanceBandwidth

Speed

Common

TechnologyChallenge

ScalingCost

Materials/EquipmentCostPowerConsumption

Demandforfaster

technicalinnovation

Time

HARStress-FreeGapfillRCManagement

ContactResistanceNext-GenPatterning

HAREtch

Large-AreaGapfillCellUniformity

StressModeling

DRAMNAND

3

N.Chandrasekar,IEDM2020

WorldwideChipOutput

DeviceCountfrom“ALL”typesofChips

TransistorCountMemoryvsNon-Memory

100%

Non-Memory

90%

80%

70%

60%

50%

40%

30%

Memory

20%

10%

0%

201020152019

February13,2024

4

Peekintothefuture

©2015MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.All

informationisprovidedonan“ASIS”basiswithoutwarrantiesofanykind.Statementsregardingproducts,includingregardingtheirfeatures,

availability,functionality,orcompatibility,areprovidedforinformationalpurposesonlyanddonotmodifythewarranty,ifany,applicabletoanyproduct.Drawingsmaynotbetoscale.Micron,theMicronlogo,andallotherMicrontrademarksarethepropertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.

TheData-CentricEraisHere

BigDataAutomotiveMobileMedical

Day-to-dayroutinesdriveincreasedneedfordataandstorage

6

VS.

2010

1GB16GB

memorystorage

2020

16GB1TB

memorystorage

Usersspend6hourseachdayonmobile*

2.5quintillionbytesof

datacreateddaily

Thefirst

exascalesupercomputers

areduein2021**

**exaFLOPS—aquintillion(billionbillion)floating-pointoperationspersecond(1018FLOPS).

Leading-edge

AImodelcomplexity

isoutpacingMoore’sLaw

by8x*

*

/blog/ai-and-compute

MemorySolutionsforArtificialIntelligence(AI)

AIsolutionsrequiremorebandwidthandbetterperformance,utilizinglesspower

Powervs.Bandwidth

Energyvs.Bandwidth

CPUPerformanceDrivenbyTransistorScaling

Endof

Moore’s

Am-

dahl’s

Law

2X/

6yrs(12%/yr)

Law

Endof

Dennard

Scaling

2X/

20yrs(3%/yr)

Multicore

RISC2X/1.5

yrs(52%/yr)

CISC

2X/3.5yrs

(22%/yr)

2X/3.5

yrs

(23%/yr)

BasedonSPECintCPU.Source:JohnHennessyandDavidPatterson,ComputerArchitecture:AQuantitativeApproach,6/e.2018

CPUPerformanceDrivenbyTransistorScaling

6yrs(12%/yr)

TraditionalMoore’sLawisending.

It’stimefor“more”thanMoore.

DomainSpecificArchitecturesaretoday’sprocessor.

Multicore2X/3.5

yrs

(23%/yr)

Needtorearchitectsystems,software,andalgorithmsforDomainSpecificArchitectures(DSA).

CISC

2X/3.5yrs

(22%/yr)

RISC2X/1.5

yrs(52%/yr)

BasedonSPECintCPU.Source:JohnHennessyandDavidPatterson,ComputerArchitecture:AQuantitativeApproach,6/e.2018

DSAshavechangedtraditionaldesignprinciples

Significantincreaseinparallelism

Reducedoverhead

Rewriteofexistingalgorithmsandsoftwaretoreapadvantages

GoogleTPUv4

Optimizeddataflowstoreducestoragerequirements

Significantlyhigherbandwidthmemory,whennecessary

DeepLearningAccelerator

Domain-specificarchitectures(DSAs)optimizecomputeanddataflow,with

increasedrelianceonmemoryanddatamovement.

InspiredbyBillDally’s“TheFutureofComputing:Domain-SpecificAccelerators”

Bandwidth

Analog

Accelerator

~100GB

forof

Analogacceleratorspavethewayordersmagnitude

ofefficiencyimprovementsforcertaindomains.

In-/near-memoryandanalogcomputingenablePB/sbandwidthinareasonablepowerenvelope

100TB/s

IMC/

NMC

8GB

10TB/s

In/near-memorycomputesignificantlyincreases

efficiency,butrequiresmorethoughtfulsystemdesigns

Computationalstorageincreasesefficiencyatimprovedformfactors,especiallyforstaticdata.

1TB/s

HBM

8GB

ComputationalStorage

100GB/s

NAND

SSD1-16TB

DRAM

DIMM~100GB

10GB/s

DRAM

1GB

1GB/s

DSAscalingthroughincreasedmemoryefficiency

BubbleSize:Log(capacity)

NAND

Die

100GB

.

01pJ/b1pJ/b10pJ/b100pJ/b1nJ/b10nJ/b

Energy

Buildingblocksinamemory-centricworld

Goal:Explorearchitectures,frameworks,andoperatingsystemsforfuturememoryandstoragebuildingblocks

StorageControllers

MemoryControllers

NAND

SmartNAND

EmergingMemories

HBM

Accelerators

DDRDRAM

FPGAs

Extremememorybandwidth:>100TB/s

Memory

Logic

Logic

Logic

Logic

Logic

C

X

L

Limiteddeep,in-memorycomputecapability

A

n

alog

Arr

a

ys

Architecture-specificanalogbuildingblocks

Pivotalchallengestoaddress:

•Architectures/algorithmsfor100xhigherbandwidth

•Data-movement-firstlanguagesandframeworks

•Toolstomakememory-centricprogrammingeasier

•Frameworkswhichdeterminethebestmemory-centricexecutiontarget

•Efficienthandoffmechanismsforcompute-heavyoperations

Co-locatedmemory,storage,andaccelerators

H.SydneyTsai,AnalogMemory-basedTechniquesforAcceleratingDeepNeuralNetworks,StorageDeveloperConference(SDC),Sept22-23,2020

Available:

/watch?v=fERwXXdwSM0

14

AlternateStorageMechanismsResearch

MovingAtoms

-PCM,CBRAM,RRAM(Filament,MetalOxide),FeRAM,CNT,Molecular....

MovingSpins

-MRAM,STTRAM,Racetrack...

10-20yearsofactiveresearchbyIndustry

15February13,2024

ComparisonofMemoryCharacteristics

DRAM

STTRAM

PCM/1T1R

RRAM

Crosspoint

RRAM

NAND

ReadLatency

20ns

~50ns

~100ns-200ns

~100ns-200ns

~10us

WriteLatency

20ns

~50ns

~1us

~1us

~10us

ReadEndurance

>1e15

>1011

>107

>107

>107

WriteEndurance

>1e15

>1011

>106

>106

2K-100K

Write/Read

Energy/bit

<10pJ/bit

~25pJ/bit

~75pJ/bit

~75pJ/bit

>100pJ/bit

Alterability

~2KB

<2KB

~10,sB

~10,sB

LargeBlocks

Retention@RT

~milliseconds

Months

~Years

~Years

Years

ArealDensity

1x

~30x

17

ChallengesofMemoryScaling

DRAMistheonlymemorythatcanprovideabalanceofperformance,density,andenergyacceptabletobeclosetotheSOC.Noneofthe“10yrhorizon”EMschallengeit.

-DRAMscalingisnowbecomingchallengedduetoROIENDURANCE

-Wearenearthe“3Dinflection”forDRAM,exactpathisindebate,optionshighlyproprietary

NANDistheonlysolid-statememorythatcandeliverlowcostperbitatacceptableenergyandperformance.Noneofthe“10yrhorizon”EMschallengeit.

-3DNANDscalingwillbecomechallengedduetoROI

-Furtherb/cincreaseandperformance/costtradeoffslikelyCOST/Bit

-Beyond3Datopicofresearch

EmergingMemoryis(Kindof)emergingandisnowjudgedtolikelynotbesuitableforDRAM/NANDreplacementbutinsteadfortheiraugmentationinthememoryhierarchy

gdcron·

Outlook:DiscoveryofNewMaterialswithNovelMechanismsandPhysics

MaterialsattheNanoscale

(ReachingAtomicDimensions)

PhysicalProperties

(StrongQuantumEffectsorPurelyQM)

DevicePhysicswithNewStateVariables

(PredominantlyNon-equilibrium)

MemoryCell,AccessDevice,Interconnects

(DeviceApplications)

IntegratedCircuits;NewCompute,Memory,

andStorageSolutions

Needisforunearthingnovelmechanisms/physicsinnewmaterialsthatrevolutionizessemiconductorapplications,incontrasttotheoldapproachofscreeningtheperiodictabletofindmaterialsystemsforexistingdeviceconcepts

18

HeterogenousIntegration

©2018MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.Allinformationisprovidedonan“ASIS”basiswithoutwarrantiesofanykind.

Statementsregardingproducts,includingregardingtheirfeatures,availability,functionality,or

compatibility,areprovidedforinformationalpurposesonlyanddonotmodifythewarranty,ifany,

applicabletoanyproduct.Drawingsmaynotbetoscale.Micron,theMicronlogo,andallotherMicrontrademarksarethepropertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.

PackagingLeadership

DevelopingaroadmaptoenablebandwidthandpowerleadershipforAIandHigh-PerformanceCMOSworkloads

HighBandwidth

Memory

ChiponSubstrateChipon/toWaferWafertoWafer

VolumeProductionYieldEnablementPathfinding

HeterogenousPackaging

20

Disruption

WaferBonding

Waferto

MemoryConstructionUsing

21

山Logic

-1-

lll

ml

HigherAccuracyAlignment

Source:IMECpresentationIEDM2020

MemoryArray-

DenseInterconnectionsbetweenMemoryArrayandCMOSRequireHighAccuracyBonding

gdcron·

•MemoryInterconnectionsbetweenCMOSandMemoryArraysrequire

•HighAccuracyBonding

•FinePitchConnectionswhichareenabledbyWafertoWaferBonding

•Co-developmentofLogicandMemoryandinterconnectlayouts,designandintegration.

•WafertoWaferBondingwith50nmAlignmentenablingsub1umhighdensity

interconnectionsneededinMemorytoadvancescaling.

•ImprovedMemoryPerformancewithEfficientFootprintenabledbyCMOSstackedwithArray

•MarkethasMemoryProductusingthistechnologyandadvancingonroadmap.

MicronMemorywith

Wafer-to-WaferBonding

Memory

Die

Co-Integrationof(3D)memory

andcomputeC2W

MemoryWaferConstruction

22

ChiptoWaferHybridBondingFacetoFaceConstruction

Phase1:

Phase2:

FinePitch(<10um)through-Siliconvia(TSV)

HighAccuracyBonding(<200nmAlign)

ChiptoWaferandFacetoBackConstruction•TSVRevealandBacksideMetals

Phase3:

WafertoWaferwithfullco-design

MemoryStack

Si

Thermal

Die

ComputeWaferConstruction

HybridBond

Si

Thermal

Die

FinePitch

Interconnect

+

=

LogicDie

SiDie

MemoryDie

MemoryStackLogicDie

Substrate

LogicDie

LogicDie

23

W2WAlignment<50nm

BondOverlayRoadmap–ExpectedversusDesired

ProblemStatement

•NoknownW2Wequipmentcapableof<50nmbondalignment

•Bondercapable50nmminimumwithbarewafersnofilm/nopattern/nostructure

•Incomingwaferdistortion(shape,inplane

distortion(IPD),residualstress)andvariabilityimpactalignmentaccuracy

•Estimateevery10nmflat-mapvariation=1nmregloss

Controlofwafershapeandplanarityacrossvariouslengthscales(e.g.,<5nm/100microns)

gsicron·

24

GuidingPrinciplesforTechnologyDevelopment

Security

Packaging

Metrology

Identifybreakthroughchallenges

Drivefullstackinnovation

Demonstrateprototypelevelsolutions

Mission:Bridgingthevalleyofdeath(betweenResearchandPilotmanufacturing)

gsicron·

25

MemorySystemCollaborationOverview

Developcapabilitiesformemorytoaddressfuturechallenges

Memory-centric

ComputeArchitectures

GrandGoal:

Focalpointformemory-centricand

materialdrivencollab.andprototyping

Enablesfull-stackcapabilitytoprototype

memory-centricdesignsandnoveldevices

Initialdemonstratorswillcomprise:

-Anapplication/infrastructure

MemoryStack

Si

Thermal

Die

-Amemory-centricarchitecture

Si

Thermal

Die

-Amemory/logicbondingprototype

-A3Dmemorystructure

FinePitchInterconnect

LogicDie

Memory-logicIntegration

NewMaterialsEmergingMemories

NanoscaleMaterials

PhysicalProperties

DevicePhysicswithNewStateVariables

MemoryCell,AccessDevice,Interconnects

IntegratedCircuits;NewCompute,Memory,

andStorageSolutions

Co-design,profile,establishvalueprop

Data-centerscale

Applicationto

Architecture

Profiling

26

FocusAreastoenableSystemLevelSolutions

IntegratedDesignFrameworkforMemoryCentricCompute

-TransformtheEDAeco-systemfromdigitalSoCfocustoco-designofmemory&computewithSW

Enablearchitectureexplorationacrossthefull-stackwithmulti-level,hierarchicalmodelingtoovercomesub-optimaldesignsfromlocalanalysisindiscretedomains

Integratedsystemlevelsimulationcapabilitiesspanninglogic,memoryandSWforanewclassofapplications

Automatedsystemverificationforself-tuning,self-adapting,&self-healingdesignsforresilientoperationforcompleteproductlife

Grounds-upsecuritydesignandscalableEDAinfrastructureformassivelyparallelorchestrationwithAIoptimizationofrun-time

Co-optimizednearandin-memorycomputearchitectures

-Addressingfundamentallimitationsoftheexistingcomputeparadigm

TheVonNeumanncomputeparadigmisfacingfundamentalchallengesinperformanceandenergyefficiencyduetodatamovementleadingtothedevelopmentofdata-centriccomputearchitecturesbasedonnearandin-memorycompute.

Bringtogethercomputeandmemoryexpertisetoprovideunprecedentedperformanceandenergyefficiency

-Memorycollaborationwithlogicandheterogeneousintegrationprograms

-Leveragethrough-silicon-via,chiptowaferandwafertowaferbondingcapability

End-to-endmemorysoftwareandhardwareco-design

-Establishmemorysystemsandsoftwaretestbed

Enablingnewmemories,memory-centricarchitecturesandmemory/computeintegrationrequiresadetailedunderstandingofmemoryworkloadsandoptimizationofthesoftwarestack

Partnerwithindustrycollaboratorstodriveadeeperunderstandingofmemoryusagemodels

-Memoryandstoragetiering

-Pooledmemoryandstorage

-Heterogeneouscomputeleveragingmemory-centricaccelerators

Cost

Memory

SoftwareSecurityCompute

memory

memory

memory

memory

memory

memory

memory

memory

memory

memory

4-highnear-memorycompute

storage

CPU

storage

storage

C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论