版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
“TheFutureofMemoryChiptechnology”
February7,2024
Dr.GurtejSSandhu
PrincipalFellowandVicePresident,TechnologyDevelopment
©2022MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.Micron,theMicronlogo,andallotherMicrontrademarksarethe
propertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.
MemoryTechnologyRoadmap
MemoryCostScalingOverTime
LogCost/GB($)
NANDCost/GBDRAMCost/GB
uuuuHistoricalCostTrend
Historical~40%YoYReductions
Historical~30%YoYReductions
New
Memory
Technology
Today
MOORE’S
SLOWING
Physical,Electrical,andMaterialsLimitations
EquipmentCapabilityCostandComplexity
©2015MicronTechnology,Inc.
PersistentChallenge
Product/DevicePerformanceBandwidth
Speed
Common
TechnologyChallenge
ScalingCost
Materials/EquipmentCostPowerConsumption
Demandforfaster
technicalinnovation
Time
HARStress-FreeGapfillRCManagement
ContactResistanceNext-GenPatterning
HAREtch
Large-AreaGapfillCellUniformity
StressModeling
DRAMNAND
3
N.Chandrasekar,IEDM2020
WorldwideChipOutput
DeviceCountfrom“ALL”typesofChips
TransistorCountMemoryvsNon-Memory
100%
Non-Memory
90%
80%
70%
60%
50%
40%
30%
Memory
20%
10%
0%
201020152019
February13,2024
4
Peekintothefuture
©2015MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.All
informationisprovidedonan“ASIS”basiswithoutwarrantiesofanykind.Statementsregardingproducts,includingregardingtheirfeatures,
availability,functionality,orcompatibility,areprovidedforinformationalpurposesonlyanddonotmodifythewarranty,ifany,applicabletoanyproduct.Drawingsmaynotbetoscale.Micron,theMicronlogo,andallotherMicrontrademarksarethepropertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.
TheData-CentricEraisHere
BigDataAutomotiveMobileMedical
Day-to-dayroutinesdriveincreasedneedfordataandstorage
6
VS.
2010
1GB16GB
memorystorage
2020
16GB1TB
memorystorage
Usersspend6hourseachdayonmobile*
2.5quintillionbytesof
datacreateddaily
Thefirst
exascalesupercomputers
areduein2021**
**exaFLOPS—aquintillion(billionbillion)floating-pointoperationspersecond(1018FLOPS).
Leading-edge
AImodelcomplexity
isoutpacingMoore’sLaw
by8x*
*
/blog/ai-and-compute
MemorySolutionsforArtificialIntelligence(AI)
AIsolutionsrequiremorebandwidthandbetterperformance,utilizinglesspower
Powervs.Bandwidth
Energyvs.Bandwidth
CPUPerformanceDrivenbyTransistorScaling
Endof
Moore’s
Am-
dahl’s
Law
⇒
2X/
6yrs(12%/yr)
Law
⇒
Endof
Dennard
Scaling
2X/
20yrs(3%/yr)
⇒
Multicore
RISC2X/1.5
yrs(52%/yr)
CISC
2X/3.5yrs
(22%/yr)
2X/3.5
yrs
(23%/yr)
BasedonSPECintCPU.Source:JohnHennessyandDavidPatterson,ComputerArchitecture:AQuantitativeApproach,6/e.2018
CPUPerformanceDrivenbyTransistorScaling
6yrs(12%/yr)
TraditionalMoore’sLawisending.
It’stimefor“more”thanMoore.
DomainSpecificArchitecturesaretoday’sprocessor.
⇒
Multicore2X/3.5
yrs
(23%/yr)
Needtorearchitectsystems,software,andalgorithmsforDomainSpecificArchitectures(DSA).
CISC
2X/3.5yrs
(22%/yr)
RISC2X/1.5
yrs(52%/yr)
BasedonSPECintCPU.Source:JohnHennessyandDavidPatterson,ComputerArchitecture:AQuantitativeApproach,6/e.2018
DSAshavechangedtraditionaldesignprinciples
Significantincreaseinparallelism
Reducedoverhead
Rewriteofexistingalgorithmsandsoftwaretoreapadvantages
GoogleTPUv4
Optimizeddataflowstoreducestoragerequirements
Significantlyhigherbandwidthmemory,whennecessary
DeepLearningAccelerator
Domain-specificarchitectures(DSAs)optimizecomputeanddataflow,with
increasedrelianceonmemoryanddatamovement.
InspiredbyBillDally’s“TheFutureofComputing:Domain-SpecificAccelerators”
Bandwidth
Analog
Accelerator
~100GB
forof
Analogacceleratorspavethewayordersmagnitude
ofefficiencyimprovementsforcertaindomains.
In-/near-memoryandanalogcomputingenablePB/sbandwidthinareasonablepowerenvelope
100TB/s
IMC/
NMC
8GB
10TB/s
In/near-memorycomputesignificantlyincreases
efficiency,butrequiresmorethoughtfulsystemdesigns
Computationalstorageincreasesefficiencyatimprovedformfactors,especiallyforstaticdata.
1TB/s
HBM
8GB
ComputationalStorage
100GB/s
NAND
SSD1-16TB
DRAM
DIMM~100GB
10GB/s
DRAM
1GB
1GB/s
DSAscalingthroughincreasedmemoryefficiency
BubbleSize:Log(capacity)
NAND
Die
100GB
.
01pJ/b1pJ/b10pJ/b100pJ/b1nJ/b10nJ/b
Energy
Buildingblocksinamemory-centricworld
Goal:Explorearchitectures,frameworks,andoperatingsystemsforfuturememoryandstoragebuildingblocks
StorageControllers
MemoryControllers
NAND
SmartNAND
EmergingMemories
HBM
Accelerators
DDRDRAM
FPGAs
Extremememorybandwidth:>100TB/s
Memory
Logic
Logic
Logic
Logic
Logic
C
X
L
Limiteddeep,in-memorycomputecapability
A
n
alog
Arr
a
ys
Architecture-specificanalogbuildingblocks
Pivotalchallengestoaddress:
•Architectures/algorithmsfor100xhigherbandwidth
•Data-movement-firstlanguagesandframeworks
•Toolstomakememory-centricprogrammingeasier
•Frameworkswhichdeterminethebestmemory-centricexecutiontarget
•Efficienthandoffmechanismsforcompute-heavyoperations
Co-locatedmemory,storage,andaccelerators
H.SydneyTsai,AnalogMemory-basedTechniquesforAcceleratingDeepNeuralNetworks,StorageDeveloperConference(SDC),Sept22-23,2020
Available:
/watch?v=fERwXXdwSM0
14
AlternateStorageMechanismsResearch
MovingAtoms
-PCM,CBRAM,RRAM(Filament,MetalOxide),FeRAM,CNT,Molecular....
MovingSpins
-MRAM,STTRAM,Racetrack...
10-20yearsofactiveresearchbyIndustry
15February13,2024
ComparisonofMemoryCharacteristics
DRAM
STTRAM
PCM/1T1R
RRAM
Crosspoint
RRAM
NAND
ReadLatency
20ns
~50ns
~100ns-200ns
~100ns-200ns
~10us
WriteLatency
20ns
~50ns
~1us
~1us
~10us
ReadEndurance
>1e15
>1011
>107
>107
>107
WriteEndurance
>1e15
>1011
>106
>106
2K-100K
Write/Read
Energy/bit
<10pJ/bit
~25pJ/bit
~75pJ/bit
~75pJ/bit
>100pJ/bit
Alterability
~2KB
<2KB
~10,sB
~10,sB
LargeBlocks
Retention@RT
~milliseconds
Months
~Years
~Years
Years
ArealDensity
1x
~30x
17
ChallengesofMemoryScaling
DRAMistheonlymemorythatcanprovideabalanceofperformance,density,andenergyacceptabletobeclosetotheSOC.Noneofthe“10yrhorizon”EMschallengeit.
-DRAMscalingisnowbecomingchallengedduetoROIENDURANCE
-Wearenearthe“3Dinflection”forDRAM,exactpathisindebate,optionshighlyproprietary
NANDistheonlysolid-statememorythatcandeliverlowcostperbitatacceptableenergyandperformance.Noneofthe“10yrhorizon”EMschallengeit.
-3DNANDscalingwillbecomechallengedduetoROI
-Furtherb/cincreaseandperformance/costtradeoffslikelyCOST/Bit
-Beyond3Datopicofresearch
EmergingMemoryis(Kindof)emergingandisnowjudgedtolikelynotbesuitableforDRAM/NANDreplacementbutinsteadfortheiraugmentationinthememoryhierarchy
gdcron·
Outlook:DiscoveryofNewMaterialswithNovelMechanismsandPhysics
MaterialsattheNanoscale
(ReachingAtomicDimensions)
PhysicalProperties
(StrongQuantumEffectsorPurelyQM)
DevicePhysicswithNewStateVariables
(PredominantlyNon-equilibrium)
MemoryCell,AccessDevice,Interconnects
(DeviceApplications)
IntegratedCircuits;NewCompute,Memory,
andStorageSolutions
Needisforunearthingnovelmechanisms/physicsinnewmaterialsthatrevolutionizessemiconductorapplications,incontrasttotheoldapproachofscreeningtheperiodictabletofindmaterialsystemsforexistingdeviceconcepts
18
HeterogenousIntegration
©2018MicronTechnology,Inc.Allrightsreserved.Information,products,and/orspecificationsaresubjecttochangewithoutnotice.Allinformationisprovidedonan“ASIS”basiswithoutwarrantiesofanykind.
Statementsregardingproducts,includingregardingtheirfeatures,availability,functionality,or
compatibility,areprovidedforinformationalpurposesonlyanddonotmodifythewarranty,ifany,
applicabletoanyproduct.Drawingsmaynotbetoscale.Micron,theMicronlogo,andallotherMicrontrademarksarethepropertyofMicronTechnology,Inc.Allothertrademarksarethepropertyoftheirrespectiveowners.
PackagingLeadership
DevelopingaroadmaptoenablebandwidthandpowerleadershipforAIandHigh-PerformanceCMOSworkloads
HighBandwidth
Memory
ChiponSubstrateChipon/toWaferWafertoWafer
VolumeProductionYieldEnablementPathfinding
HeterogenousPackaging
20
Disruption
WaferBonding
Waferto
MemoryConstructionUsing
21
山Logic
-1-
lll
ml
HigherAccuracyAlignment
Source:IMECpresentationIEDM2020
MemoryArray-
DenseInterconnectionsbetweenMemoryArrayandCMOSRequireHighAccuracyBonding
gdcron·
•MemoryInterconnectionsbetweenCMOSandMemoryArraysrequire
•HighAccuracyBonding
•FinePitchConnectionswhichareenabledbyWafertoWaferBonding
•Co-developmentofLogicandMemoryandinterconnectlayouts,designandintegration.
•WafertoWaferBondingwith50nmAlignmentenablingsub1umhighdensity
interconnectionsneededinMemorytoadvancescaling.
•ImprovedMemoryPerformancewithEfficientFootprintenabledbyCMOSstackedwithArray
•MarkethasMemoryProductusingthistechnologyandadvancingonroadmap.
MicronMemorywith
Wafer-to-WaferBonding
Memory
Die
Co-Integrationof(3D)memory
andcomputeC2W
MemoryWaferConstruction
22
ChiptoWaferHybridBondingFacetoFaceConstruction
Phase1:
Phase2:
FinePitch(<10um)through-Siliconvia(TSV)
HighAccuracyBonding(<200nmAlign)
ChiptoWaferandFacetoBackConstruction•TSVRevealandBacksideMetals
Phase3:
WafertoWaferwithfullco-design
MemoryStack
Si
Thermal
Die
ComputeWaferConstruction
HybridBond
Si
Thermal
Die
FinePitch
Interconnect
+
=
LogicDie
SiDie
MemoryDie
MemoryStackLogicDie
Substrate
LogicDie
LogicDie
23
W2WAlignment<50nm
BondOverlayRoadmap–ExpectedversusDesired
ProblemStatement
•NoknownW2Wequipmentcapableof<50nmbondalignment
•Bondercapable50nmminimumwithbarewafersnofilm/nopattern/nostructure
•Incomingwaferdistortion(shape,inplane
distortion(IPD),residualstress)andvariabilityimpactalignmentaccuracy
•Estimateevery10nmflat-mapvariation=1nmregloss
Controlofwafershapeandplanarityacrossvariouslengthscales(e.g.,<5nm/100microns)
gsicron·
24
GuidingPrinciplesforTechnologyDevelopment
Security
Packaging
Metrology
Identifybreakthroughchallenges
Drivefullstackinnovation
Demonstrateprototypelevelsolutions
Mission:Bridgingthevalleyofdeath(betweenResearchandPilotmanufacturing)
gsicron·
25
MemorySystemCollaborationOverview
Developcapabilitiesformemorytoaddressfuturechallenges
Memory-centric
ComputeArchitectures
GrandGoal:
Focalpointformemory-centricand
materialdrivencollab.andprototyping
Enablesfull-stackcapabilitytoprototype
memory-centricdesignsandnoveldevices
Initialdemonstratorswillcomprise:
-Anapplication/infrastructure
MemoryStack
Si
Thermal
Die
-Amemory-centricarchitecture
Si
Thermal
Die
-Amemory/logicbondingprototype
-A3Dmemorystructure
FinePitchInterconnect
LogicDie
Memory-logicIntegration
NewMaterialsEmergingMemories
NanoscaleMaterials
PhysicalProperties
DevicePhysicswithNewStateVariables
MemoryCell,AccessDevice,Interconnects
IntegratedCircuits;NewCompute,Memory,
andStorageSolutions
Co-design,profile,establishvalueprop
Data-centerscale
Applicationto
Architecture
Profiling
26
FocusAreastoenableSystemLevelSolutions
IntegratedDesignFrameworkforMemoryCentricCompute
-TransformtheEDAeco-systemfromdigitalSoCfocustoco-designofmemory&computewithSW
Enablearchitectureexplorationacrossthefull-stackwithmulti-level,hierarchicalmodelingtoovercomesub-optimaldesignsfromlocalanalysisindiscretedomains
Integratedsystemlevelsimulationcapabilitiesspanninglogic,memoryandSWforanewclassofapplications
Automatedsystemverificationforself-tuning,self-adapting,&self-healingdesignsforresilientoperationforcompleteproductlife
Grounds-upsecuritydesignandscalableEDAinfrastructureformassivelyparallelorchestrationwithAIoptimizationofrun-time
Co-optimizednearandin-memorycomputearchitectures
-Addressingfundamentallimitationsoftheexistingcomputeparadigm
TheVonNeumanncomputeparadigmisfacingfundamentalchallengesinperformanceandenergyefficiencyduetodatamovementleadingtothedevelopmentofdata-centriccomputearchitecturesbasedonnearandin-memorycompute.
Bringtogethercomputeandmemoryexpertisetoprovideunprecedentedperformanceandenergyefficiency
-Memorycollaborationwithlogicandheterogeneousintegrationprograms
-Leveragethrough-silicon-via,chiptowaferandwafertowaferbondingcapability
End-to-endmemorysoftwareandhardwareco-design
-Establishmemorysystemsandsoftwaretestbed
Enablingnewmemories,memory-centricarchitecturesandmemory/computeintegrationrequiresadetailedunderstandingofmemoryworkloadsandoptimizationofthesoftwarestack
Partnerwithindustrycollaboratorstodriveadeeperunderstandingofmemoryusagemodels
-Memoryandstoragetiering
-Pooledmemoryandstorage
-Heterogeneouscomputeleveragingmemory-centricaccelerators
Cost
Memory
SoftwareSecurityCompute
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
4-highnear-memorycompute
storage
CPU
storage
storage
C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的临床试验技术研究
- 生物标志物在临床试验中的亚组分析策略-1
- 生物制剂失应答的个体化治疗方案制定
- 生物制剂TDM指导下的IBD联合治疗方案优化
- 深度解析(2026)《GBT 20081.2-2021气动 减压阀和过滤减压阀 第2部分:评定商务文件中应包含的主要特性的试验方法》
- 深度解析(2026)《GBT 19487-2004电子政务业务流程设计方法 通 用规范》
- 深度解析(2026)GBT 19520.17-2010电子设备机械结构 482.6mm(19in)系列机械结构尺寸 第3-105部分:1U高度机箱的尺寸和设计要求
- 人力资源管理师考试难点突破与应试技巧含答案
- 设备维护工作考核标准及流程
- 娱乐休闲产品加工建设项目可行性分析报告(总投资3000万元)
- 《做酸奶》课件教学课件
- 开展中长导管的临床意义
- 《企业战略管理》期末复习题库 (一)
- 第5单元舞剧音乐《快乐的女战士》课件人教版初中音乐九年级上册
- 8.2《购买水果》(教案)-2025-2026学年三年级上册数学 北师大版
- 按摩店大学生创业计划
- 广东省领航高中联盟2025-2026学年高三上学期12月联考政治试卷(含答案)
- 2025年秋人教版(新教材)初中数学七年级上册期末综合测试卷及答案
- 城市地下综合管廊运营方案
- (完整版)2025年新版药品管理法培训试卷附答案
- 2025年检察院书记员考试题库附答案
评论
0/150
提交评论