2025年英语考研阅读理解长难句解析与解题策略试卷_第1页
2025年英语考研阅读理解长难句解析与解题策略试卷_第2页
2025年英语考研阅读理解长难句解析与解题策略试卷_第3页
2025年英语考研阅读理解长难句解析与解题策略试卷_第4页
2025年英语考研阅读理解长难句解析与解题策略试卷_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年英语考研阅读理解长难句解析与解题策略试卷考试时间:______分钟总分:______分姓名:______PartAReadingComprehensionDirections:Inthepassagebelow,eachsentenceisfollowedbyfourchoicesmarkedA),B),C)andD).YoushoulddecideonthebestchoiceandmarkthecorrespondingletteronAnswerSheet2withasinglelinethroughthecentre.Arecentstudyonurbancommutingpatternshasrevealedsomeinteresting,albeitsomewhatcounterintuitive,findingsregardingtherelationshipbetweentraveltimeandjobsatisfaction.Traditionalwisdomsuggeststhatlongercommutesleadtoincreasedstressanddecreasedjobsatisfaction,asindividualsspendmoretimetravelingandhavelesstimeforpersonalactivities.However,thestudy'sresultsindicatethatthisrelationshipisnotstraightforward.Infact,formanyprofessionals,particularlythosewhoworkinhigh-payingfieldssuchasfinanceandtechnology,longercommutescanbeassociatedwithhigherlevelsofjobsatisfaction.Theresearchershypothesizedthatthekeyfactorinfluencingjobsatisfactioninthiscontextisnotthemeredurationofthecommute,butrathertheperceivedvalueofthejob.Individualswhofeelthattheirjobprovidessignificantpersonalandfinancialrewardsmaybewillingtoendurelongercommutesiftheybelievethebenefitsoutweighthecosts.Conversely,thosewhoarelesssatisfiedwiththeirjobmayfindevenshortcommutestobeasourceoffrustrationandstress.Oneofthestudy'smostsurprisingfindingswasthepositivecorrelationobservedbetweencommutedurationandjobsatisfactionamongemployeesincertainindustries.Forinstance,softwareengineersandinvestmentbankersinmajormetropolitanareasoftenreporthighlevelsofjobsatisfactiondespitespendingtwoorthreehourseachwaycommutingtowork.Thisphenomenonappearstobedrivenbyacombinationoffactors,includingthehighdemandforskilledprofessionalsinthesefields,whichtranslatesintocompetitivesalariesandcareeradvancementopportunities.Additionally,manyoftheseworkersviewtheircommutesasanecessaryinvestmentintheircareers,ratherthanaburden.Theimplicationsofthisstudyforurbanplanningandworkplacepolicyaresignificant.Iflongercommutesdonotnecessarilyequatetolowerjobsatisfactionforcertainsegmentsoftheworkforce,thenemployersmayhavemoreflexibilityinlocatingtheirofficesinareasthatoffergreateraccesstohousingorotheramenities,withoutsacrificingemployeecontentment.Similarly,policymakersmightconsiderrevisingtransportationpoliciestofocusmoreonefficiencyandconvenience,ratherthansimplyminimizingtraveltime.Afterall,therelationshipbetweencommutingandjobsatisfactionismorecomplexthanitfirstappears.Furthermore,thestudyhighlightstheimportanceofindividualperceptionindeterminingjobsatisfaction.Twopeoplemayexperiencethesamecommute,buttheirsubjectiveevaluationsofthatexperiencecandiffergreatly.Forexample,anindividualwhoviewstheircommuteasatimetorelaxandlistentopodcastsmayperceiveitasapositiveaspectoftheirday,whereassomeonewhoviewsitasatediousandunavoidablenecessitymayexperienceitasasignificantsourceofstress.Thisunderscorestheneedforpersonalizedapproachestomanagingthechallengesofurbancommuting.Thefindingsalsoraisequestionsaboutthenatureofworkitselfinthemoderneconomy.Asmorejobsbecomeremoteorflexible,thetraditionalmodelofthedailycommutemaybecomelessrelevant.Thisshiftcouldpotentiallyleadtogreaterjobsatisfactionforsomeworkers,astheywouldbeabletoeliminatecommutesaltogetherorreducetheirdurationsignificantly.However,itcouldalsocreatenewchallenges,suchasdifficultiesinseparatingworkfrompersonallifewhenworkingfromhome.Thelong-termimpactofthesechangesonjobsatisfactionremainstobeseen,butitisclearthattherelationshipbetweencommutingandjobsatisfactionisevolvinginresponsetotechnologicalandsocietalshifts.C)Thestudy'sfindingschallengetheconventionalviewthatlongercommutesinevitablyleadtolowerjobsatisfaction.D)Theresearchersbelievethattheperceivedvalueofajobistheprimarydeterminantofjobsatisfactionforcommuters.Accordingtothepassage,whatisthemainreasonwhysomeprofessionalswithlongcommutesreporthighlevelsofjobsatisfaction?A)Theyderivesignificantpersonalenjoymentfromtheirdailytravelexperiences.B)Theybelievethattheircommutesareanecessaryinvestmentintheircareerdevelopment.C)Theyliveinareaswithbetterpublictransportationsystems.D)Theyarecompensatedwithhighersalariestooffsetthetimespentcommuting.Thepassagesuggeststhatwhichofthefollowingfactorsmaycontributetothepositivecorrelationbetweencommutedurationandjobsatisfactionincertainindustries?A)Theavailabilityofaffordablehousingnearmajortransportationhubs.B)Thehighdemandforskilledprofessionals,leadingtocompetitivesalariesandcareeropportunities.C)Theimplementationofflexibleworkschedulesbyemployers.D)Thepresenceofnumerousrecreationalactivitiesalongthecommuteroutes.Whatdoesthepassageimplyabouttheroleofurbanplannersandpolicymakersinlightofthestudy'sfindings?A)Theyshouldprioritizethedevelopmentofpublictransportationtoreducecommutetimes.B)Theyshouldfocusoncreatingmorejobopportunitiesinareaswithhighhousingcosts.C)Theyshouldconsiderthediverseneedsofcommuterswhendesigningtransportationpolicies.D)Theyshouldencourageemployerstolocatetheirofficesfartherfromresidentialareas.Accordingtothepassage,howmighttheriseofremoteworkaffecttherelationshipbetweencommutingandjobsatisfaction?A)Itcouldleadtoincreasedjobsatisfactionforallworkersbyeliminatingtheneedforcommutes.B)Itmightcreatenewchallengesforworkerswhostruggletomaintainwork-lifeboundaries.C)Itwillhavenosignificantimpactonjobsatisfactionsincemostjobswillremainintraditionalofficesettings.D)Itwillprimarilybenefitworkersinfieldsthatrequirefrequentface-to-faceinteractions.Thepassageindicatesthatwhichofthefollowingisakeyfactorinfluencinganindividual'sperceptionoftheircommute?A)Thephysicaldistancetraveledduringthecommute.B)Themodeoftransportationusedforthecommute.C)Theindividual'spersonalattitudesandexpectationsregardingtravel.D)Theavailabilityofentertainmentoptionsduringthecommute.Theresearchers'hypothesisinthestudyisbestdescribedas:A)Longercommutesleadtohigherstresslevels,whichnegativelyimpactjobsatisfaction.B)Thedurationofthecommuteisthemostsignificantfactoraffectingjobsatisfaction.C)Jobsatisfactionisprimarilydeterminedbytheperceivedvalueofthejob,regardlessofcommutelength.D)Commuterswhoaresatisfiedwiththeirjobsarewillingtoendurelongercommutesforfinancialrewards.Thepassageprovidesanexampleofsoftwareengineersandinvestmentbankerstoillustrate:A)Thenegativeeffectsoflongcommutesonmentalhealth.B)Theimportanceofflexibleworkarrangementsforhigh-earningprofessionals.C)Howcertainindustriescantoleratelongercommutesduetohighjobsatisfaction.D)Theroleofcareeradvancementopportunitiesincompensatingforlongtraveltimes.Whichofthefollowingstatementsissupportedbytheinformationinthepassage?A)Allprofessionalsinhigh-payingfieldsareequallysatisfiedwiththeirjobsdespitelongcommutes.B)Urbanplannersshouldprioritizetheconstructionofhousingnearworkplacestoreducecommutes.C)Therelationshipbetweencommutingandjobsatisfactionisinfluencedbyindividualperceptionsandjobvalue.D)Employersshouldavoidlocatingtheirofficesinareaswithlongcommutestomaintainemployeesatisfaction.Thepassagesuggeststhatwhichofthefollowingmightbeafuturetrendintheworkplace?A)Thecompleteeliminationofoffice-basedworkinfavorofremotework.B)Acontinuedemphasisonminimizingcommutetimesasakeyfactorinjobsatisfaction.C)Thedevelopmentofnewtransportationtechnologiestomakecommutesmoreenjoyable.D)Greaterflexibilityinworkarrangementstoaccommodatevaryingcommutingpatterns.PartBReadingComprehensionDirections:Thefollowingpassageisfollowedbysomequestions.Readthepassagecarefullyandthenanswerthequestionsbasedonwhatisstatedorimpliedinthepassage.WriteyouranswersneatlyonAnswerSheet2.Intherealmofartificialintelligence(AI),theconceptof"deeplearning"hasemergedasarevolutionaryapproach,enablingmachinestolearnfromexperienceandunderstandtheworldthroughahierarchyofconcepts.Unliketraditionalmachinelearningalgorithmsthatrelyonfeatureextractionbyhumanexperts,deeplearningmodelsuseneuralnetworkswithmultiplelayers(hencetheterm"deep")toautomaticallylearntherepresentationsneededfordetectionorclassification.Thisabilitytolearnhierarchicalfeatureshasmadedeeplearningparticularlysuccessfulinareassuchascomputervision,naturallanguageprocessing,andspeechrecognition.Thefoundationofdeeplearningliesinneuralnetworks,whichareinspiredbythestructureandfunctionofthehumanbrain.Thesenetworksconsistofinterconnectednodes,or"neurons,"organizedintolayers.Eachneuronreceivesinputfromthepreviouslayer,processesitusingamathematicaloperation,andpassestheoutputtothenextlayer.Theprocessisrepeatedacrossmultiplelayers,allowingthenetworktolearnincreasinglycomplexpatternsandrepresentations.The"depth"ofthenetworkreferstothenumberoflayersitcontains,anddeepernetworkscanpotentiallylearnmoreabstractandnuancedfeatures.Oneofthekeyadvantagesofdeeplearningisitsabilitytohandlelargeamountsofdataefficiently.Thehierarchicallearningprocessenablesthenetworktoautomaticallydiscoverthemostrelevantfeaturesfromtherawdata,eliminatingtheneedformanualfeatureengineering.ThishasledtosignificantimprovementsintheperformanceofAIsystemsacrossvariousdomains.Forinstance,deeplearningmodelshaveachievedstate-of-the-artresultsinimagerecognitiontasks,surpassinghuman-levelaccuracyinsomecases.However,deeplearningalsofacesseveralchallenges.Onemajorchallengeistherequirementforlargeamountsoflabeleddatatotrainthemodelseffectively.Unliketraditionalmachinelearningalgorithmsthatcansometimesperformwellwithsmallerdatasets,deeplearningmodelsneedextensivetrainingdatatogeneralizewelltonew,unseenexamples.ThishasledtoconcernsaboutdataprivacyandtheethicalimplicationsofusinglargedatasetsfortrainingAImodels.Anotherchallengeisthecomputationalcostassociatedwithtrainingdeeplearningmodels.Theprocessoftrainingadeepneuralnetworkinvolvesalargenumberofcomputations,whichcanbecomputationallyintensiveandtime-consuming.Thishasnecessitatedthedevelopmentofspecializedhardware,suchasgraphicsprocessingunits(GPUs)andfield-programmablegatearrays(FPGAs),toacceleratethetrainingprocess.Despitetheseadvancements,trainingdeepmodelsremainsasignificantbottleneckinthedeploymentofAIsystems.Recentadvancementsindeeplearninghavefocusedonaddressingthesechallenges.Techniquessuchastransferlearningandunsupervisedlearninghavebeendevelopedtoreducethedependencyonlargelabeleddatasets.Transferlearninginvolvesleveragingpre-trainedmodelsonlargedatasetsandfine-tuningthemforspecifictasks,whileunsupervisedlearningmethodsaimtolearnmeaningfulrepresentationsfromunlabeleddata.Theseapproacheshaveshownpromisingresultsinreducingtheamountoflabeleddatarequiredandimprovingthegeneralizationperformanceofdeeplearningmodels.Theimpactofdeeplearningonsocietyhasbeenprofound.Inhealthcare,deeplearningmodelshavebeenusedtoanalyzemedicalimages,assistindiagnosis,andpredictpatientoutcomes.Inautonomousvehicles,deeplearningplaysacrucialroleinobjectdetection,navigation,anddecision-making.Innaturallanguageprocessing,deeplearninghasenabledadvancementsinmachinetranslation,sentimentanalysis,andchatbots.Theseapplicationsdemonstratetheversatilityandpotentialofdeeplearningintransformingvariousindustriesandimprovinghumanlives.Despiteitssuccess,deeplearningisnotwithoutitslimitations.Onelimitationisthelackofinterpretabilityandtransparencyinthedecision-makingprocessofdeeplearningmodels.Unliketraditionalalgorithmsthatprovideclearrulesformakingpredictions,deeplearningmodelsoftenoperateas"blackboxes,"makingitdifficulttounderstandhowtheyarriveatspecificdecisions.Thislackofinterpretabilityhasraisedconcernsaboutthereliabilityandtrustworthinessofdeeplearningsystems,particularlyincriticalapplicationssuchashealthcareandfinance.Anotherlimitationisthepotentialforbiasindeeplearningmodels.Thesemodelslearnfromthedatatheyaretrainedon,andifthetrainingdatacontainsbiases,themodelwilllearnandperpetuatethesebiases.Thishasledtoissuessuchasracialandgenderbiasesinfacialrecognitionsystemsandpredictivepolicingalgorithms.Addressingthesebiasesrequirescarefuldatasetcuration,algorithmicfairnesstechniques,andongoingmonitoringtoensurethatdeeplearningmodelsarefairandequitable.FutureresearchindeeplearningislikelytofocusonaddressingtheselimitationsanddevelopingmorerobustandreliableAIsystems.EffortsarebeingmadetoimprovetheinterpretabilityofdeeplearningmodelsthroughtechniquessuchasattentionmechanismsandexplainableAI(XAI)methods.Thesemethodsaimtoprovideinsightsintothedecision-makingprocessofdeeplearningmodels,makingthemmoretransparentandunderstandabletohumans.Additionally,researchisongoingtodevelopmoreinclusiveandunbiaseddeeplearningmodels.Thisincludeseffortstodiversifytrainingdatasets,incorporatefairnessconstraintsintothetrainingprocess,andevaluatemodelsfortheirpotentialbiases.Byaddressingtheseissues,thegoalistoensurethatdeeplearningmodelsarefair,equitable,andbeneficialforallmembersofsociety.Inconclusion,deeplearninghasemergedasapowerfulandtransformativeapproachinthefieldofartificialintelligence.Itsabilitytolearnhierarchicalfeaturesfromlargedatasetshasledtosignificantadvancementsinvariousdomains.However,deeplearningalsofaceschallengesrelatedtodatarequirements,computationalcosts,interpretability,andbias.Ongoingresearcheffortsarefocusedonaddressingthesechallengesanddevelopingmorerobust,reliable,andequitableAIsystems.Asdeeplearningcontinuestoevolve,itholdsthepotentialtorevolutionizenumerousindustriesandimprovehumanlivesinprofoundways.Whatisthemainpurposeofthepassage?A)Toprovideacomprehensiveoverviewofdeeplearninganditsapplications.B)Toargueagainsttheuseofdeeplearningduetoitslimitations.C)Toexplainthetechnicaldetailsofneuralnetworksandtheirroleindeeplearning.D)Toproposenewresearchdirectionsfordeeplearninginthefuture.Accordingtothepassage,whatisoneofthekeyadvantagesofdeeplearning?A)Itsabilitytoperformwellwithsmalldatasets.B)Itsrelianceonmanualfeatureengineering.C)Itsuseofneuralnetworkswithmultiplelayerstoautomaticallylearnrepresentations.D)Itsrequirementforspecializedhardwarefortraining.Thepassagementionswhichofthefollowingasachallengefacedbydeeplearning?A)Theneedformanualfeatureextraction.B)Thehighcomputationalcostoftrainingmodels.C)Thelackofinterpretabilityinthedecision-makingprocess.D)Therelianceonsmalllabeleddatasets.Whichofthefollowingstatementsissupportedbytheinformationinthepassage?A)Deeplearningmodelsareonlyusefulinthefieldofcomputervision.B)Thedevelopmentofspecializedhardwarehaseliminatedthecomputationalchallengesofdeeplearning.C)Transferlearningandunsupervisedlearningaretechniquesusedtoaddressthechallengesofdeeplearning.D)Deeplearningmodelsarecompletelyunbiasedandfair.Thepassagesuggeststhatwhichofthefollowingmightbeafuturetrendindeeplearningresearch?A)Thecompleteabandonmentofsupervisedlearninginfavorofunsupervisedlearning.B)Agreaterfocusontheinterpretabilityandtransparencyofdeeplearningmodels.C)Thedevelopmentofdeeplearningmodelsthatareexclusivelyusedforhealthcareapplications.D)Thereductionofthecomputationalcostoftrainingdeeplearningmodelstothepointwhereitisnolongerachallenge.Thepassagementionswhichofthefollowingasalimitationofdeeplearning?A)Itsinabilitytohandlelargeamountsofdataefficiently.B)Itsrelianceoninterpretabilityandtransparencyinthedecision-makingprocess.C)Itspotentialforbiasandlackoffairness.D)Itslimitedapplicationsinvariousindustries.Thepassageindicatesthatwhichofthefollowingisagoalofongoingresearchindeeplearning?A)Toreducethedependencyonlargelabeleddatasets.B)Toeliminatetheneedforspecializedhardwareindeeplearningtraining.C)Todevelopdeeplearningmodelsthatareexclusivelyusedforfacialrecognition.D)Tomakedeeplearningmodelscompletelyunbiasedandfair.Thepassagesuggeststhatwhichofthefollowingfactorscontributestothesuccessofdeeplearninginvariousdomains?A)Itsrelianceonmanualfeatureengineering.B)Itsabilitytohandlelargeamountsofdataandautomaticallylearnrepresentations.C)Itsrequirementforsmalllabeleddatasets.D)Itsuseoftraditionalmachinelearningalgorithms.Thepassagementionswhichofthefollowingasanapplicationofdeeplearning?A)Predictivepolicingalgorithms.B)Facialrecognitionsystems.C)Machinetranslationandsentimentanalysis.D)Traditionalmachinelearningalgorithms.Thepassagein

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论