2026年技术趋势报告 Tech Trends 2026-德勤d_第1页
2026年技术趋势报告 Tech Trends 2026-德勤d_第2页
2026年技术趋势报告 Tech Trends 2026-德勤d_第3页
2026年技术趋势报告 Tech Trends 2026-德勤d_第4页
2026年技术趋势报告 Tech Trends 2026-德勤d_第5页
已阅读5页,还剩110页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Astechnologyinnovationandadoptionaccelerate,fivetrendsrevealhow

successfulorganizationsaremovingfromexperimentationtoimpact

TechTrends2026

Deloitte.

InsⅢhts

Tableofcontents

02...Executivesummary

04...Innovationcompounds

09...AIgoesphysical:NavigatingtheconvergenceofAIandrobotics

21...Theagenticrealitycheck:Preparingforasilicon-basedworkforce

33...TheAIinfrastructurereckoning:Optimizingcomputestrategyintheage

of

inferenceeconomics

43...Thegreatrebuild:ArchitectinganAI-nativetechorganization

53...TheAIdilemma:SecuringandleveragingAIforcyberdefense

62...Cuttingthroughthenoise:TechsignalsworthtrackingasAIadvances

2

Executivesummary

L

astyear’s

TechTrendsreport

predictedthatartificialintelligencewouldbecomeakintoelectricity,afoundationalelementthat’sseamlesslybakedintoanincrediblybroadrangeofproductsandservices.Thisyear’sreport,the17thannualeditionofTech

Trends,provesthathypothesis.NocornerofenterprisetechnologyisuntouchedbyAIasthedemandforintel-ligentoperationsinformsdecisionsoneverythingfromcomputinghardwaretophysicalrobotics.And,whilelastyear’sfocuswasonbuildingproof-of-conceptprojectsandexploringtheartofthepossible,thisyearisallaboutscaling.Enterprisesacrossindustriesareoperationaliz-ingAI-drivenprocesses.Thereasonissimple:LeadershaverealizedthatthekeytocompetitivedifferentiationwillbeusingAItodriveautomation,innovation,andacceleration.

Innovationcompounds

TechnologyleadersfaceacriticalshiftfromAIexper-imentationtomeasurableimpact.Innovationnowcompoundsexponentially:GenerativeAIreachedapproximately100millionusersinjusttwomonthsversus50yearsfortelephonestoreach50millionusers.Thisiscreatingamultiplyingflywheeleffectwhereimprovementsintechnology,data,investment,andinfrastructuresimultaneouslyaccelerateeachother.Traditionalinfrastructureandsequentialimprovementprocessescan’tkeeppace.Successrequiresmorethansophisticatedtechnology.Organizationsmustredesignratherthanmerelyautomateprocesses,connectinvest-mentstobusinessoutcomes,andexecuterapidly.

AIgoesphysical:Navigatingthe

convergenceofAIandrobotics

PhysicalAIisevolvingrobotsfrompreprogrammedmachinesintoadaptivesystemsthatperceive,learn,andoperateautonomouslyincomplexenvironments.Thesecapabilitiesshowupinindustrialrobots,autonomousvehicles,drones,andothersystems.Currentchallengesincludegapsintraining,safetyconcerns,andcyberse-curityrisks,butfallingcostsareextendingadoptionbeyondsmartwarehousingandsupplychainopera-tionsintothemainstream.Humanoidrobotsarethenextfrontier,withprojectionsof2millionworkplacehumanoidsby2035.Futuredevelopmentsmayincludebio-hybridrobotsandquantumrobotics.

Theagenticrealitycheck:Preparing

forasilicon-basedworkforce

Despiteearlyenthusiasm,manybusinesseshaveyettoseesignificanttransformationfromagenticAIimplementationsbecausemostsimplyautomateexist-ingprocessesratherthanfundamentallyredesigningoperations.Only11%ofsurveyedorganizationshavedeployedagenticsystemsinproduction,withchallengesincludinglegacysystemintegration,dataarchitectureconstraints,andinadequategovernanceframeworks.Leadingorganizationsareadoptingagent-firstprocessredesign,implementingmultiagentorchestrationusingemergingprotocols,andtreatingagentsasasili-con-basedworkforcerequiringspecializedmanage-mentframeworks.Thisincludesagentonboarding,performancetracking,andFinOpscostmanagement.Thefuturepointstowardgraduatedautonomylevels,hybridhuman-digitalworkforces,andleveragingagent-generateddataforcontinuouslearning,transforminghowenterprisesoperateandcompete.

3

TheAIinfrastructurereckoning:

Optimizingcomputestrategyinthe

ageofinferenceeconomics

AsAImovesfromexperimentationtoproduction,enterprisesfaceaninfrastructuredilemma.Whiletokencostshavedroppedsubstantially,overallAIspendingisexplodingduetomassiveusagegrowth.Organizationsarehittingatippingpointwherecloudservicesbecomecost-prohibitiveforhigh-volumeworkloads,withmonthlybillsreachingtensofmillions.Leadingenter-prisesareadoptingstrategichybridarchitectures:cloudforvariableworkloads,on-premisesforconsistentproductioninference,andedgeforlatency-criticalappli-cations.Thiscanrequirepurpose-builtAIdatacentersfeaturinghardwareoptimizedforgraphicsprocessingunits,advancednetworking,andspecializedcooling.Futurechallengesincludeworkforcereskilling,AIagentsmanaginginfrastructure,andsustainablecomputinginnovationslikerenewable-poweredandpotentiallyorbitaldatacenters.

Thegreatrebuild:Architectingan

AI-nativetechorganization

AIisfundamentallyrestructuringtechnologyorganiza-tionsbeyondsimpleautomation.With64%oforgani-zationsincreasingAIinvestmentsandtechbudgetsforAIrising,prioritiesareshiftingfrominfrastructuremainte-nancetostrategicleadership.LeadingorganizationsareanchoringAIinitiativestomeasurablebusinessoutcomes,designingmodulararchitecturesforflexibility,andrede-finingtalentstrategiesaroundhuman-machinecollabo-ration.Newrolesareemerging,suchasAIcollaborationdesigners,edgeAIengineers,andpromptengineers,whilechiefinformationofficersareevolvingfromtechstrat-egiststoAIevangelistsandorchestrators.Futuretechorganizationswillfeatureagenticarchitectures,leanprod-uct-ledteams,blendedhuman-agentworkforces,adaptivegovernance,andecosystem-orientedinnovation.Successrequiresembracingcontinuousevolutionandboldlyreimaginingoperationsratherthanincrementalchange.

TheAIdilemma:Securingandleveraging

AIforcyberdefense

AIcreatesacybersecurityparadox:Thesamecapabil-itiesdrivingbusinessinnovationarealsointroducingnewrisks.OrganizationsfacethreatsfromshadowAIdeployments,adversarialattacks,andintrinsicAIsystemweaknessesacrossfourdomains:data,models,applica-tions,andinfrastructure.ExistingsecuritypracticescanbeadaptedtoaddressAI-specificrisksthroughrobustaccesscontrols,modelisolation,andsecuredeploymentarchitectures.AndAIofferspowerfulnewcapabilitiestocountertheveryvulnerabilitiesitcreates.Leadingorgani-zationsareleveragingAIdefensivelythroughredteamingwithAIagents,adversarialtraining,andautomatedthreatdetectionatmachinespeed.FuturechallengesincludeAI-physicalinfrastructureconvergence,autonomouscyberwarfare,andquantumandspacesecuritythreats.SuccessrequiresembeddingsecurityintoAIinitiativesfrominception,treatingitasanenablerratherthanaconstraintoninnovation.

Cuttingthroughthenoise:Techsignals

worthtrackingasAIadvances

Executivesummary

TechTrendstakesadeepdiveintofivetechnologydevel-opmentsthatarereshapinghowbusinessesoperate,buttherearefarmorethanfivetrendsimpactingorganiza-tionsatanygivenmoment.Eightadjacent“signals”alsowarrantmonitoring.Theyincludewhetherfoun-dationalAImodelsmaybeplateauing,theimpactofsyntheticdataonmodels,developmentsinneuromorphiccomputing,emergingedgeAIusecases,thegrowthinAIwearables,opportunitiesforbiometricauthentication,theprivacyimpactofAIagents,andtheemergenceofgenerativeengineoptimization.Someofthesesignalsmaymatureintodominantforces.Othersmayfade.Butallofthemreflectthesameunderlyingreality:Thepaceoftechnologicalchangehasfundamentallyshifted,andtheorganizationsthatrecognizethesepatternsearlywillhavetimetoadapt.

4

Innovationcompounds

Astechnologyinnovationandadoptionaccelerate,fivetrendsrevealhowsuccessfulorganizationsaremovingfromexperimentationtoimpact

KellyRaskovich

I

spendmostofmyyearinconversationswithtech-nologyleaders,askingwhat’sworking,whatisn’t,andwhatkeepsthemupatnight.Lately,thoseconversationshavetakenonadifferentquality.

Thequestionusedtobe“Whatcanwedowith

AI?”Nowit’s“Howdowemovefromexperimentationtoimpact?”Thefocushasmovedfromendlesspilotstorealbusinessvalue,andthere’sasenseofurgencybehinditall.Notbecausethetechnologyisgettingbetter—thoughitis—butbecausethepaceofchangeitselfhasaccelerated.

Thenumberstellthestory(figure1).Thetelephonetook50yearstoreach50millionusers.Theinternettooksevenyears.AleadinggenerativeAItoolreachedabouttwicethatmanyintwomonths.1Asofthiswriting,thattoolhasover800millionweeklyusers—roughly10%oftheplanet’spopulation.2

Butrapidadoptionisonlythesurface.Innovationiscompounding;forcesaren’tsimplyadditive,butmulti-plicative.Thinkofitasaflywheel:Bettertechnologyenablesmoreapplications.Moreapplicationsgeneratemoredata.Moredataattractsmoreinvestment.Moreinvestmentbuildsbetterinfrastructure.Betterinfrastruc-turereducescosts.Lowercostsenablemoreexperimen-tation.Eachimprovementsimultaneouslyacceleratesalltheothers.

It’swhyAIstartupsscalefromUS$1milliontoUS$30millioninrevenuefivetimesfasterthanSaaScompaniesdid.3It’swhytheknowledgehalf-lifeinAIhasshrunktomonthsfromyears.4Andit’swhyonechiefinfor-mationofficer(CIO)toldme,“Thetimeittakesustostudyanewtechnologynowexceedsthattechnology’srelevancewindow.”

5

Figure1

TheAItransformationinnumbers

800M

weeklyusersofaleadingAItool(10%ofplanet)

havenoagenticstrategy

35%

revenuescaling

5xfaster

(AIvs.SaaSstartups)

Only11%aoadgn

inferencecostreduction,yetbillsintensofmillions

280-fold

Theinvestmentimbalance:

93%ontech

7%onpeople

reportnooperatingmodelchanges

Only1%

Sources:RebeccaBellan,“SamAltmansaysChatGPThashit800Mweeklyactiveusers,”TechCrunch,Oct.6,2025;Deloi廿eEmerging

TechnologyTrendsintheEnterpriseSurvey;WingVentureCapital,“AIgrowingfasterthanSaaS”;StanfordHuman-CenteredAIInstitute,“AIIndexReport2025”;Deloi廿eresearchonAIinvestmentallocationpa廿erns,2025;Deloi廿e2025TechSpendingOutlook.

Everyorganizationwestudiedisdiscoveringthesametruth:Whatgotthemherewon’tgetthemthere.

Theinfrastructurebuiltforcloud-firststrategiescan’thandleAIeconomics.Processesdesignedforhumanworkersdon’tworkforagents.Securitymodelsbuiltforperimeterdefensedon’tprotectagainstthreatsoperatingatmachinespeed.IToperatingmodelsbuiltforservicedeliverydon’tdrivebusinesstransformation.

Thisisn’tonlyaboutenhancement.

It’saboutrebuilding.

For17years,TechTrendshasexploredemergingtech-nologiespoisedtoreshapebusinessinthenext18to24months.OurresearchisbasedontrendsensingfromconversationswithDeloittesubjectmatterexpertsand

externaltechnologyleaders,aswellasDeloitte’spropri-etaryresearchonemergingtechnologies.Thisyear,thedatarevealsfiveinterconnectedforces.

AIgoesphysical:Navigatingthe

convergenceofAIandrobotics

Innovationcompounds

Amazondeployeditsmillionthrobot,anditsDeepFleetAIcoordinatestheentirerobotfleet,improvingtravelefficiencywithinwarehousesby10%.5BMW’sfacto-rieshavecarsdrivingthemselvesthroughkilometer-longproductionroutes.6Intelligenceisn’tconfinedtoscreensanymore;it’sembodied,autonomous,andsolvingrealproblemsinthephysicalworld.

6

Theagenticrealitycheck:Preparing

forasilicon-basedworkforce

Only11%oforganizationshaveagentsinproduction,despite38%pilotingthem.Thegapbetweenpilottoproductiontellsyoueverything.Forty-twopercentarestilldevelopingtheirstrategy,while35%havenostrat-egyatall.7Gartnerpredictsthat40%ofagenticprojectswillfailby20278—notbecausethetechnologydoesn’twork,butbecauseorganizationsareautomatingbrokenprocessesinsteadofredesigningoperations.HPE’schieffinancialofficercapturedwhatworks:“Wewantedtoselectanend-to-endprocesswherewecouldtrulytrans-form,notjustsolveforasinglepainpoint.”9Redesign,don’tautomate.That’sthepatternseparatingsuccessfromfailure.

TheAIinfrastructurereckoning:

Optimizingcomputestrategyinthe

ageofinferenceeconomics

Tokencostshavedropped280-foldintwoyears;10yetsomeenterprisesareseeingmonthlybillsinthetensofmillions.Usageexplodedfasterthancostsdeclined.Organizationsarediscoveringtheirexistinginfrastruc-turestrategiesaren’tdesignedtoscaleAItoproduc-tion-scaledeployment.They’reshiftingfromcloud-firsttostrategichybrid:cloudforelasticity,on-premisesforconsistency,andedgeforimmediacy.

Thegreatrebuild:Architectingan

AI-nativetechorganization

AIisrestructuringtechorganizations,makingthemleaner,faster,andmorestrategic.Only1%ofITleaderssurveyedbyDeloittereportedthatnomajoroperatingmodelchangeswereunderway.11LeadersareshiftingfromincrementalITmanagementtoorchestratinghuman-agentteams,withCIOsbecomingAIevangelists.Successrequiresboldreimagination:modulararchitec-tures,embeddedgovernance,andperpetualevolutionascorecapabilities.

TheAIdilemma:Securingandleveraging

AIforcyberdefense

Thetechnologymeanttogivebusinessesanadvantageisbecomingthetargetusedagainstthem.AT&T’schiefinformationsecurityofficer

capturedthechallenge

:“Whatwe’reexperiencingtodayisnodifferentthanwhatwe’veexperiencedinthepast.TheonlydifferencewithAIisspeedandimpact.”12OrganizationsmustsecureAIacrossfourdomains—data,models,applications,andinfrastructure—buttheyalsohavetheopportunitytouseAI-powereddefensestofightthreatsoperatingatmachinespeed.

Throughoutthisyear’sreport,you’llmeettechnologyleaderssuccessfullynavigatingthisseachange.Theydon’thavealltheanswers,buttherearenoticeablepatternsastheylightthewayforward.

•Theyleadwithproblems,nottechnology.Broadcom’sCIO:“Withoutfocusingonaspecificbusinessproblemandthevalueyouwanttoderive,itcouldbeeasytoinvestinAIandreceivenoreturn.”13

•Specifically,theirbiggestproblems.UiPathCEO:“Ratherthangettingstuckinacycleofperpetualproofsofconcept,considerattackingyourbiggestproblemandgoingforabigoutcome.”14

•Theyprioritizevelocityoverperfection.WesternDigital’sCIO:“We’dratherfailfastonsmallpilotsthanmissthewaveentirely.”15

•Theydesignwithpeople,notjustforthem.Walmartinvolvedstoreassociatesinbuildingitsschedulingapp,whichincludesshiftswapping,schedulevisi-bility,andemployeecontrol.Theresult:Schedulingtimedroppedfrom90minutesto30minutes,andpeopleactuallyusedtheapp.16

•Theytreatchangeascontinuous.Coca-Cola’sCIOdescribedtheirjourneyasmovingfrom“Whatcanwedo?”to“Whatshouldwedo?”17Thatshift—fromcapability-firsttoneed-first—iswhatseparatesproductiveexperimentationfrompilotpurgatory.

7

I’vetrackedtechnologyevolutionlongenoughtorecog-nizethepatterns.Theinternetchangedeverything.Mobilereshapedconsumerbehavior.Cloudcomputingwastransformative.

Butthismomentisdifferent.

It’snotjustthatAIispowerful.It’sthatthe

S-curves

arecompressing.Thedistancebetweenemergingandmainstreamiscollapsing.

Organizationsbuiltforsequentialimprovementcan’tcompetewiththoseoperatingincontinuouslearningloops.Thetraditionalplaybookassumedyouhadtimetogetitright.Thatassumptionnolongerholds.

Theorganizationsthatsucceedwillprobablynotbethosewiththemostsophisticatedtechnology.They’llbethosewiththecouragetoredesignratherthanautomate,

thedisciplinetoconnecteveryinvestmenttobusinessoutcomes,andthevelocitytoexecutebeforethewindowcloses.

Innovationcompounds.Thegapbetweenlaggardsandleadersgrowsexponentially.Howyouresponddeter-mineswhichsideofthatgapyou’reon.

Butyoudon’thavetonavigatethisalone.Wehopethisyear’spublicationremindsyouthateveryone’sfacingthisrapidpaceofchange,andtogether,wecanshapewhatcomesnext.

KellyRaskovich

Executiveeditor,TechTrends

Endnotes

1.JeffDesjardins,“Intheraceto50millionusersthere’soneclear

winner-anditmightsurpriseyou,”WorldEconomicForum,

June26,2018;AlexandraGarfinkle,“ChatGPTontrackto

surpass100millionusersfasterthanTikTokorInstagram:

UBS,”YahooFinance,Feb.2,2023.

2.RebeccaBellan,“SamAltmansaysChatGPThashit800Mweeklyactiveusers,”TechCrunch,Oct.6,2025.

3.ZachDeWitt,“AIgrowingfasterthanSaaS,”WingVentureCapital,November7,2024.

4.BasedonDeloitteanalysisoftechnologyadoptioncyclesandAIcapabilityevolutiontimelines.

5.ScottDresser,“Amazondeploysover1millionrobotsandlaunchesnewAIfoundationmodel,”Amazon,July1,2025.

6.BradAnderson,“WhoneedsfactorydriverswhencarsdrivethemselvesatBMWplants,”CarScoop,Nov.26,2024.

7.Deloitte2025EmergingTechnologyTrendsintheEnterprise

Survey.FromJunetoJuly2025,Deloitteconductedanonlinesurveyof500UStechnologyleaderstoquantifytheprevalence,engagement,andperceptionssurroundingtheadoptionof

emergingtechnologiesacrossindustries.

8.Gartner,“Gartnerpredictsover40%ofagenticAIprojectswillbecanceledbyendof2027,”pressrelease,June25,2025.

9.MarieMyers(executivevicepresidentandchieffinancialofficer,HPE),interviewwithDeloitte,March1,2025.

10.StanfordInstituteforHuman-CenteredArtificialIntelligence,“TheAIIndexreport2025,”accessedNov.12,2025.

11.Deloitte2025TechSpendingOutlook.FromJunetoJuly2025,Deloitteconductedanonlinesurveyof302ITprocurement

leaders,headsofIT,andnon-ITexecutiveswithtechnologyspendingoversighttounderstandhowUSenterprisesinkeyindustriesaremanagingtechnologybudgets.

12.“Ano-nonsenseapproachtosecureAIenablementatAT&T,”DeloitteInsights,Nov.21,2025.

13.KatherineNoyes,“BroadcomCIO:‘Modernizationshouldbedrivenbythebusiness’,”CIOJournal,TheWallStreetJournal,andDeloitte,Sept.10,2025.

14.KatherineNoyes,“UiPathCEO:Agenticautomationwill‘usherinaneweraofwork’,”CIOJournal,TheWallStreetJournal,andDeloitte,Feb.21,2025.

15.KatherineNoyes,“WesternDigitalCIO:IntheAIera,‘Playoffenseorgetleftbehind’,”CIOJournal,TheWallStreet

Journal,andDeloitte,Sept.6,2025.

16.Walmart,“WalmartunveilsnewAI-poweredtoolstoempower1.5millionassociates,”June24,2025.

Innovationcompounds

17.KatherineNoyes,“Coca-ColaCIOonscalingAI:From‘Whatcanwedo?’to‘Whatshouldwedo’,”CIOJournal,TheWallStreetJournal,andDeloitte,Jan.18,2025.

9

AIgoesphysical:NavigatingtheconvergenceofAIandrobotics

Poweredbyartificialintelligence,traditionalrobotsarebecomingadaptivemachinesthatcanoperatein—andlearnfrom—complexenvironments,unlockingsafetyandprecisiongains

JimRowan,TimGaus,FranzGilbert,andCarolineBrown

R

obotspoweredbyphysicalAIarenolongerconfinedtoresearchlabsorfactoryfloors.They’reinspectingpowergrids,assistinginsurgery,navigatingcitystreets,andwork-ingalongsidehumansinwarehouses.Thetransitionfromprototypetoproduction

ishappeningnow.

PhysicalAIreferstoartificialintelligencesystemsthatenablemachinestoautonomouslyperceive,understand,reasonabout,andinteractwiththephysicalworldinrealtime.Thesecapabilitiesshowupinrobots,vehi-cles,simulations,andsensorsystems.Unliketraditionalrobotsthatfollowpreprogrammedinstructions,phys-icalAIsystemsperceivetheirenvironment,learnfromexperience,andadapttheirbehaviorbasedonreal-timedata.Automationalonedoesn’tmakethemrevolution-ary;rather,it’stheircapacitytobridgethegapbetweendigitalintelligenceandthephysicalworld.

Inthenascentbutrapidlyevolvingcategoryofrobots,physicalAIturnsrobotsintoadaptive,learningmachinesthatcanoperateincomplex,unpredictableenviron-ments.ThecombinationofAI,mobility,andphysicalagencyenablesrobotstomovethroughenvironments,performtasks,andinteractwiththeworldinwaysthatfundamentallydifferfromenhancedappliances.Embodiedinroboticsystems,physicalAIisquiteliterallyonthemove.

Today,AI-enableddrones,autonomousvehicles,andotherrobotsarebecomingincreasinglycommon,particu-larlyinsmartwarehousingandsupplychainoperations.Theindustry,regulatorybodies,andpotentialadopters

areworkingtobreakdownbarriersthathinderthedeploymentofsolutionsatscale.Asorganizationsover-comethesechallenges,AI-enabledrobotswilllikelytran-sitionfromnichetomainstreamadoption.Eventually,we’llwitnessphysicalAI’snextevolutionaryleap:thearrivalofhumanoidrobotsthatcannavigatehumanspaceswithunprecedentedcapability.

Fromprototypetoproduction

AIgoesphysical:NavigatingtheconvergenceofAIandrobotics

UnliketraditionalAIsystemsthatoperatesolelyindigi-talenvironments,physicalAIsystemsintegratesensoryinput,spatialunderstanding,anddecision-makingcapa-bilities,enablingmachinestoadaptandrespondtothree-dimensionalenvironmentsandphysicaldynamics.Theyrelyonablendofneuralgraphics,syntheticdatageneration,physics-basedsimulation,andadvancedAIreasoning.Trainingapproachessuchasreinforcementlearningandimitationlearningenablethesesystemstomasterprincipleslikegravityandfrictioninvirtualenvironmentsbeforebeingdeployedintherealworld.

RobotsareonlyoneembodimentofphysicalAI.Italsoencompassessmartspacesthatusefixedcamerasandcomputervisiontooptimizeoperationsinfactoriesandwarehouses,digitaltwinsimulationsthatenablevirtualtestingandoptimizationofphysicalsystems,andsensor-basedAIsystemsthathelphumanteamsmanagecomplexphysicalenvironmentswithoutrequiringroboticmanipulation.

Whereastraditionalrobotsfollowsetinstructions,phys-icalAIsystemsperceivetheirenvironment,learnfrom

10

experience,andadapttheirbehaviorbasedonreal-timedataandchangingconditions.Theymanipulateobjects,navigateunpredictablespaces,andmakesplit-seconddecisionswithreal-worldimplications.Robotdogsprocessacousticsignaturestodetectequipmentfail-uresbeforetheybecomecatastrophic.Factoryrobotsrecalculatetheirrouteswhenproductionschedulesshiftmid-operation.Autonomousvehiclesusesensordatatospotcyclistssoonerthanhumandrivers.Deliverydronesadjusttheirflightpathsaswindconditionschange.Whatmakesthesesystemsrevolutionaryisn’tjusttaskautomationbuttheircapacitytoperceive,reason,andadapt,whichenablesthemtobridgethegapbetweendigitalintelligenceandthephysicalworld.1

TechadvancementsdrivephysicalAI–roboticsintegration

PhysicalAIisreadyformainstreamdeploymentbecauseoftheconvergenceofseveraltechnologiesthatimpacthowrobotsperceivetheirenvironment,processinfor-mation,andexecuteactionsinrealtime.

Vision-language-actionmodels.PhysicalAIadoptstrain-ingmethodsfromlargelanguagemodels(LLMs)whileincorporatingdatathatdescribesthephysicalworld.Multimodalvision-language-action(VLA)modelsintegratecomputervision,naturallanguageprocess-ing,andmotorcontrol.2Likethehumanbrain,VLAmodelshelprobotsinterprettheirsurroundingsandselectappropriateactions(figure1).

Onboardcomputingandprocessing.Neuralprocess-ingunits—specializedprocessorsoptimizedforedgecomputing—enablelow-latency,energy-efficient,real-timeAIprocessingdirectlyonrobots.OnboardcapabilityallowsphysicalAIsystemstorunLLMsandVLAmodels,processhigh-speedsensordata,andmakesplit-second,safety-criticaldecisionswithoutclouddependency—essentialforautonomousvehicles,indus-trialrobotics,andremotesurgery.3Itcanalsotransformrobotsfromisolatedmachinesintoautonomoussystemsthatcanshareknowledgeandcoordinateactionsacrossintelligentnetworks.

Roboticsadvancementshavemaderobotsmoreacces-sibleandcapable:4

•Computervisionfor“seeing”andunderstandingsurroundings

•Sensorsforcapturinginformationsuchassound,light,temperature,andtouch

•Actuatorsformovement,inspiredbyhumanmuscles

•Spatialcomputingfornavigating3Denvironments

•Improvedbatteriesthatenablelongeroperationwithoutfrequentrecharging

Trainingandlearning.Inreinforcementlearning,robotsdevelopsophisticatedbehaviorsthroughtrialanderror

Figure1

Action

Motorcontrolsystemsexecutephysicaltasksbasedonvisualinputandlinguisticinstructions

Howvision-language-actionmodelswork

Vision

Computervisionsystemsinterpretvisual

environmentsandidentifyobjects,obstacles,andspatialrelationships

>

Language

Naturallanguageprocessingunderstandshumancommandsandcancommunicateintentions

Source:Deloi廿eanalysis.

11

byreceivingrewardsorpenalties.Inimitationlearning,robotsmimicexpertdemonstrations.Bothapproachescanbeappliedinsimulatedenvironmentsorinthephysicalworldwithrealhardware.5Ablendofthesetechniques,startingwithsimulation-basedreinforce-menttrainingandthenfine-tuningwithtargetedphys-icaldemonstrations,cancreatecontinuouslearningloops.Thishelpsrobotscontinuetoimprovebyfeedingreal-worlddatabackintotheirtrainingpoliciesandsimulationspaces.6

Compellingeconomicsboostindustrialadoption

Astechnologyadvances,costshavebeencomingdown,andmanyreal-worldapplicationshaveemerged.

AdvancedmanufacturinginfrastructurenowsupportstheproductionofcomplexroboticsandphysicalAIsystemsatenterprisescale.ThismeansthatphysicalAIrobotscannowbeproducedwiththereliabilityandqualitycontrolofsmartphonesorcars,makingthempracticalforeverydayindustrialuse.

Componentcommoditizationandopen-sourcedevelop-mentarereducingentry

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论