版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Astechnologyinnovationandadoptionaccelerate,fivetrendsrevealhow
successfulorganizationsaremovingfromexperimentationtoimpact
TechTrends2026
Deloitte.
InsⅢhts
Tableofcontents
02...Executivesummary
04...Innovationcompounds
09...AIgoesphysical:NavigatingtheconvergenceofAIandrobotics
21...Theagenticrealitycheck:Preparingforasilicon-basedworkforce
33...TheAIinfrastructurereckoning:Optimizingcomputestrategyintheage
of
inferenceeconomics
43...Thegreatrebuild:ArchitectinganAI-nativetechorganization
53...TheAIdilemma:SecuringandleveragingAIforcyberdefense
62...Cuttingthroughthenoise:TechsignalsworthtrackingasAIadvances
2
Executivesummary
L
astyear’s
TechTrendsreport
predictedthatartificialintelligencewouldbecomeakintoelectricity,afoundationalelementthat’sseamlesslybakedintoanincrediblybroadrangeofproductsandservices.Thisyear’sreport,the17thannualeditionofTech
Trends,provesthathypothesis.NocornerofenterprisetechnologyisuntouchedbyAIasthedemandforintel-ligentoperationsinformsdecisionsoneverythingfromcomputinghardwaretophysicalrobotics.And,whilelastyear’sfocuswasonbuildingproof-of-conceptprojectsandexploringtheartofthepossible,thisyearisallaboutscaling.Enterprisesacrossindustriesareoperationaliz-ingAI-drivenprocesses.Thereasonissimple:LeadershaverealizedthatthekeytocompetitivedifferentiationwillbeusingAItodriveautomation,innovation,andacceleration.
Innovationcompounds
TechnologyleadersfaceacriticalshiftfromAIexper-imentationtomeasurableimpact.Innovationnowcompoundsexponentially:GenerativeAIreachedapproximately100millionusersinjusttwomonthsversus50yearsfortelephonestoreach50millionusers.Thisiscreatingamultiplyingflywheeleffectwhereimprovementsintechnology,data,investment,andinfrastructuresimultaneouslyaccelerateeachother.Traditionalinfrastructureandsequentialimprovementprocessescan’tkeeppace.Successrequiresmorethansophisticatedtechnology.Organizationsmustredesignratherthanmerelyautomateprocesses,connectinvest-mentstobusinessoutcomes,andexecuterapidly.
AIgoesphysical:Navigatingthe
convergenceofAIandrobotics
PhysicalAIisevolvingrobotsfrompreprogrammedmachinesintoadaptivesystemsthatperceive,learn,andoperateautonomouslyincomplexenvironments.Thesecapabilitiesshowupinindustrialrobots,autonomousvehicles,drones,andothersystems.Currentchallengesincludegapsintraining,safetyconcerns,andcyberse-curityrisks,butfallingcostsareextendingadoptionbeyondsmartwarehousingandsupplychainopera-tionsintothemainstream.Humanoidrobotsarethenextfrontier,withprojectionsof2millionworkplacehumanoidsby2035.Futuredevelopmentsmayincludebio-hybridrobotsandquantumrobotics.
Theagenticrealitycheck:Preparing
forasilicon-basedworkforce
Despiteearlyenthusiasm,manybusinesseshaveyettoseesignificanttransformationfromagenticAIimplementationsbecausemostsimplyautomateexist-ingprocessesratherthanfundamentallyredesigningoperations.Only11%ofsurveyedorganizationshavedeployedagenticsystemsinproduction,withchallengesincludinglegacysystemintegration,dataarchitectureconstraints,andinadequategovernanceframeworks.Leadingorganizationsareadoptingagent-firstprocessredesign,implementingmultiagentorchestrationusingemergingprotocols,andtreatingagentsasasili-con-basedworkforcerequiringspecializedmanage-mentframeworks.Thisincludesagentonboarding,performancetracking,andFinOpscostmanagement.Thefuturepointstowardgraduatedautonomylevels,hybridhuman-digitalworkforces,andleveragingagent-generateddataforcontinuouslearning,transforminghowenterprisesoperateandcompete.
3
TheAIinfrastructurereckoning:
Optimizingcomputestrategyinthe
ageofinferenceeconomics
AsAImovesfromexperimentationtoproduction,enterprisesfaceaninfrastructuredilemma.Whiletokencostshavedroppedsubstantially,overallAIspendingisexplodingduetomassiveusagegrowth.Organizationsarehittingatippingpointwherecloudservicesbecomecost-prohibitiveforhigh-volumeworkloads,withmonthlybillsreachingtensofmillions.Leadingenter-prisesareadoptingstrategichybridarchitectures:cloudforvariableworkloads,on-premisesforconsistentproductioninference,andedgeforlatency-criticalappli-cations.Thiscanrequirepurpose-builtAIdatacentersfeaturinghardwareoptimizedforgraphicsprocessingunits,advancednetworking,andspecializedcooling.Futurechallengesincludeworkforcereskilling,AIagentsmanaginginfrastructure,andsustainablecomputinginnovationslikerenewable-poweredandpotentiallyorbitaldatacenters.
Thegreatrebuild:Architectingan
AI-nativetechorganization
AIisfundamentallyrestructuringtechnologyorganiza-tionsbeyondsimpleautomation.With64%oforgani-zationsincreasingAIinvestmentsandtechbudgetsforAIrising,prioritiesareshiftingfrominfrastructuremainte-nancetostrategicleadership.LeadingorganizationsareanchoringAIinitiativestomeasurablebusinessoutcomes,designingmodulararchitecturesforflexibility,andrede-finingtalentstrategiesaroundhuman-machinecollabo-ration.Newrolesareemerging,suchasAIcollaborationdesigners,edgeAIengineers,andpromptengineers,whilechiefinformationofficersareevolvingfromtechstrat-egiststoAIevangelistsandorchestrators.Futuretechorganizationswillfeatureagenticarchitectures,leanprod-uct-ledteams,blendedhuman-agentworkforces,adaptivegovernance,andecosystem-orientedinnovation.Successrequiresembracingcontinuousevolutionandboldlyreimaginingoperationsratherthanincrementalchange.
TheAIdilemma:Securingandleveraging
AIforcyberdefense
AIcreatesacybersecurityparadox:Thesamecapabil-itiesdrivingbusinessinnovationarealsointroducingnewrisks.OrganizationsfacethreatsfromshadowAIdeployments,adversarialattacks,andintrinsicAIsystemweaknessesacrossfourdomains:data,models,applica-tions,andinfrastructure.ExistingsecuritypracticescanbeadaptedtoaddressAI-specificrisksthroughrobustaccesscontrols,modelisolation,andsecuredeploymentarchitectures.AndAIofferspowerfulnewcapabilitiestocountertheveryvulnerabilitiesitcreates.Leadingorgani-zationsareleveragingAIdefensivelythroughredteamingwithAIagents,adversarialtraining,andautomatedthreatdetectionatmachinespeed.FuturechallengesincludeAI-physicalinfrastructureconvergence,autonomouscyberwarfare,andquantumandspacesecuritythreats.SuccessrequiresembeddingsecurityintoAIinitiativesfrominception,treatingitasanenablerratherthanaconstraintoninnovation.
Cuttingthroughthenoise:Techsignals
worthtrackingasAIadvances
Executivesummary
TechTrendstakesadeepdiveintofivetechnologydevel-opmentsthatarereshapinghowbusinessesoperate,buttherearefarmorethanfivetrendsimpactingorganiza-tionsatanygivenmoment.Eightadjacent“signals”alsowarrantmonitoring.Theyincludewhetherfoun-dationalAImodelsmaybeplateauing,theimpactofsyntheticdataonmodels,developmentsinneuromorphiccomputing,emergingedgeAIusecases,thegrowthinAIwearables,opportunitiesforbiometricauthentication,theprivacyimpactofAIagents,andtheemergenceofgenerativeengineoptimization.Someofthesesignalsmaymatureintodominantforces.Othersmayfade.Butallofthemreflectthesameunderlyingreality:Thepaceoftechnologicalchangehasfundamentallyshifted,andtheorganizationsthatrecognizethesepatternsearlywillhavetimetoadapt.
4
Innovationcompounds
Astechnologyinnovationandadoptionaccelerate,fivetrendsrevealhowsuccessfulorganizationsaremovingfromexperimentationtoimpact
KellyRaskovich
I
spendmostofmyyearinconversationswithtech-nologyleaders,askingwhat’sworking,whatisn’t,andwhatkeepsthemupatnight.Lately,thoseconversationshavetakenonadifferentquality.
Thequestionusedtobe“Whatcanwedowith
AI?”Nowit’s“Howdowemovefromexperimentationtoimpact?”Thefocushasmovedfromendlesspilotstorealbusinessvalue,andthere’sasenseofurgencybehinditall.Notbecausethetechnologyisgettingbetter—thoughitis—butbecausethepaceofchangeitselfhasaccelerated.
Thenumberstellthestory(figure1).Thetelephonetook50yearstoreach50millionusers.Theinternettooksevenyears.AleadinggenerativeAItoolreachedabouttwicethatmanyintwomonths.1Asofthiswriting,thattoolhasover800millionweeklyusers—roughly10%oftheplanet’spopulation.2
Butrapidadoptionisonlythesurface.Innovationiscompounding;forcesaren’tsimplyadditive,butmulti-plicative.Thinkofitasaflywheel:Bettertechnologyenablesmoreapplications.Moreapplicationsgeneratemoredata.Moredataattractsmoreinvestment.Moreinvestmentbuildsbetterinfrastructure.Betterinfrastruc-turereducescosts.Lowercostsenablemoreexperimen-tation.Eachimprovementsimultaneouslyacceleratesalltheothers.
It’swhyAIstartupsscalefromUS$1milliontoUS$30millioninrevenuefivetimesfasterthanSaaScompaniesdid.3It’swhytheknowledgehalf-lifeinAIhasshrunktomonthsfromyears.4Andit’swhyonechiefinfor-mationofficer(CIO)toldme,“Thetimeittakesustostudyanewtechnologynowexceedsthattechnology’srelevancewindow.”
5
Figure1
TheAItransformationinnumbers
800M
weeklyusersofaleadingAItool(10%ofplanet)
havenoagenticstrategy
35%
revenuescaling
5xfaster
(AIvs.SaaSstartups)
Only11%aoadgn
inferencecostreduction,yetbillsintensofmillions
280-fold
Theinvestmentimbalance:
93%ontech
7%onpeople
reportnooperatingmodelchanges
Only1%
Sources:RebeccaBellan,“SamAltmansaysChatGPThashit800Mweeklyactiveusers,”TechCrunch,Oct.6,2025;Deloi廿eEmerging
TechnologyTrendsintheEnterpriseSurvey;WingVentureCapital,“AIgrowingfasterthanSaaS”;StanfordHuman-CenteredAIInstitute,“AIIndexReport2025”;Deloi廿eresearchonAIinvestmentallocationpa廿erns,2025;Deloi廿e2025TechSpendingOutlook.
Everyorganizationwestudiedisdiscoveringthesametruth:Whatgotthemherewon’tgetthemthere.
Theinfrastructurebuiltforcloud-firststrategiescan’thandleAIeconomics.Processesdesignedforhumanworkersdon’tworkforagents.Securitymodelsbuiltforperimeterdefensedon’tprotectagainstthreatsoperatingatmachinespeed.IToperatingmodelsbuiltforservicedeliverydon’tdrivebusinesstransformation.
Thisisn’tonlyaboutenhancement.
It’saboutrebuilding.
For17years,TechTrendshasexploredemergingtech-nologiespoisedtoreshapebusinessinthenext18to24months.OurresearchisbasedontrendsensingfromconversationswithDeloittesubjectmatterexpertsand
externaltechnologyleaders,aswellasDeloitte’spropri-etaryresearchonemergingtechnologies.Thisyear,thedatarevealsfiveinterconnectedforces.
AIgoesphysical:Navigatingthe
convergenceofAIandrobotics
Innovationcompounds
Amazondeployeditsmillionthrobot,anditsDeepFleetAIcoordinatestheentirerobotfleet,improvingtravelefficiencywithinwarehousesby10%.5BMW’sfacto-rieshavecarsdrivingthemselvesthroughkilometer-longproductionroutes.6Intelligenceisn’tconfinedtoscreensanymore;it’sembodied,autonomous,andsolvingrealproblemsinthephysicalworld.
6
Theagenticrealitycheck:Preparing
forasilicon-basedworkforce
Only11%oforganizationshaveagentsinproduction,despite38%pilotingthem.Thegapbetweenpilottoproductiontellsyoueverything.Forty-twopercentarestilldevelopingtheirstrategy,while35%havenostrat-egyatall.7Gartnerpredictsthat40%ofagenticprojectswillfailby20278—notbecausethetechnologydoesn’twork,butbecauseorganizationsareautomatingbrokenprocessesinsteadofredesigningoperations.HPE’schieffinancialofficercapturedwhatworks:“Wewantedtoselectanend-to-endprocesswherewecouldtrulytrans-form,notjustsolveforasinglepainpoint.”9Redesign,don’tautomate.That’sthepatternseparatingsuccessfromfailure.
TheAIinfrastructurereckoning:
Optimizingcomputestrategyinthe
ageofinferenceeconomics
Tokencostshavedropped280-foldintwoyears;10yetsomeenterprisesareseeingmonthlybillsinthetensofmillions.Usageexplodedfasterthancostsdeclined.Organizationsarediscoveringtheirexistinginfrastruc-turestrategiesaren’tdesignedtoscaleAItoproduc-tion-scaledeployment.They’reshiftingfromcloud-firsttostrategichybrid:cloudforelasticity,on-premisesforconsistency,andedgeforimmediacy.
Thegreatrebuild:Architectingan
AI-nativetechorganization
AIisrestructuringtechorganizations,makingthemleaner,faster,andmorestrategic.Only1%ofITleaderssurveyedbyDeloittereportedthatnomajoroperatingmodelchangeswereunderway.11LeadersareshiftingfromincrementalITmanagementtoorchestratinghuman-agentteams,withCIOsbecomingAIevangelists.Successrequiresboldreimagination:modulararchitec-tures,embeddedgovernance,andperpetualevolutionascorecapabilities.
TheAIdilemma:Securingandleveraging
AIforcyberdefense
Thetechnologymeanttogivebusinessesanadvantageisbecomingthetargetusedagainstthem.AT&T’schiefinformationsecurityofficer
capturedthechallenge
:“Whatwe’reexperiencingtodayisnodifferentthanwhatwe’veexperiencedinthepast.TheonlydifferencewithAIisspeedandimpact.”12OrganizationsmustsecureAIacrossfourdomains—data,models,applications,andinfrastructure—buttheyalsohavetheopportunitytouseAI-powereddefensestofightthreatsoperatingatmachinespeed.
Throughoutthisyear’sreport,you’llmeettechnologyleaderssuccessfullynavigatingthisseachange.Theydon’thavealltheanswers,buttherearenoticeablepatternsastheylightthewayforward.
•Theyleadwithproblems,nottechnology.Broadcom’sCIO:“Withoutfocusingonaspecificbusinessproblemandthevalueyouwanttoderive,itcouldbeeasytoinvestinAIandreceivenoreturn.”13
•Specifically,theirbiggestproblems.UiPathCEO:“Ratherthangettingstuckinacycleofperpetualproofsofconcept,considerattackingyourbiggestproblemandgoingforabigoutcome.”14
•Theyprioritizevelocityoverperfection.WesternDigital’sCIO:“We’dratherfailfastonsmallpilotsthanmissthewaveentirely.”15
•Theydesignwithpeople,notjustforthem.Walmartinvolvedstoreassociatesinbuildingitsschedulingapp,whichincludesshiftswapping,schedulevisi-bility,andemployeecontrol.Theresult:Schedulingtimedroppedfrom90minutesto30minutes,andpeopleactuallyusedtheapp.16
•Theytreatchangeascontinuous.Coca-Cola’sCIOdescribedtheirjourneyasmovingfrom“Whatcanwedo?”to“Whatshouldwedo?”17Thatshift—fromcapability-firsttoneed-first—iswhatseparatesproductiveexperimentationfrompilotpurgatory.
7
I’vetrackedtechnologyevolutionlongenoughtorecog-nizethepatterns.Theinternetchangedeverything.Mobilereshapedconsumerbehavior.Cloudcomputingwastransformative.
Butthismomentisdifferent.
It’snotjustthatAIispowerful.It’sthatthe
S-curves
arecompressing.Thedistancebetweenemergingandmainstreamiscollapsing.
Organizationsbuiltforsequentialimprovementcan’tcompetewiththoseoperatingincontinuouslearningloops.Thetraditionalplaybookassumedyouhadtimetogetitright.Thatassumptionnolongerholds.
Theorganizationsthatsucceedwillprobablynotbethosewiththemostsophisticatedtechnology.They’llbethosewiththecouragetoredesignratherthanautomate,
thedisciplinetoconnecteveryinvestmenttobusinessoutcomes,andthevelocitytoexecutebeforethewindowcloses.
Innovationcompounds.Thegapbetweenlaggardsandleadersgrowsexponentially.Howyouresponddeter-mineswhichsideofthatgapyou’reon.
Butyoudon’thavetonavigatethisalone.Wehopethisyear’spublicationremindsyouthateveryone’sfacingthisrapidpaceofchange,andtogether,wecanshapewhatcomesnext.
KellyRaskovich
Executiveeditor,TechTrends
Endnotes
1.JeffDesjardins,“Intheraceto50millionusersthere’soneclear
winner-anditmightsurpriseyou,”WorldEconomicForum,
June26,2018;AlexandraGarfinkle,“ChatGPTontrackto
surpass100millionusersfasterthanTikTokorInstagram:
UBS,”YahooFinance,Feb.2,2023.
2.RebeccaBellan,“SamAltmansaysChatGPThashit800Mweeklyactiveusers,”TechCrunch,Oct.6,2025.
3.ZachDeWitt,“AIgrowingfasterthanSaaS,”WingVentureCapital,November7,2024.
4.BasedonDeloitteanalysisoftechnologyadoptioncyclesandAIcapabilityevolutiontimelines.
5.ScottDresser,“Amazondeploysover1millionrobotsandlaunchesnewAIfoundationmodel,”Amazon,July1,2025.
6.BradAnderson,“WhoneedsfactorydriverswhencarsdrivethemselvesatBMWplants,”CarScoop,Nov.26,2024.
7.Deloitte2025EmergingTechnologyTrendsintheEnterprise
Survey.FromJunetoJuly2025,Deloitteconductedanonlinesurveyof500UStechnologyleaderstoquantifytheprevalence,engagement,andperceptionssurroundingtheadoptionof
emergingtechnologiesacrossindustries.
8.Gartner,“Gartnerpredictsover40%ofagenticAIprojectswillbecanceledbyendof2027,”pressrelease,June25,2025.
9.MarieMyers(executivevicepresidentandchieffinancialofficer,HPE),interviewwithDeloitte,March1,2025.
10.StanfordInstituteforHuman-CenteredArtificialIntelligence,“TheAIIndexreport2025,”accessedNov.12,2025.
11.Deloitte2025TechSpendingOutlook.FromJunetoJuly2025,Deloitteconductedanonlinesurveyof302ITprocurement
leaders,headsofIT,andnon-ITexecutiveswithtechnologyspendingoversighttounderstandhowUSenterprisesinkeyindustriesaremanagingtechnologybudgets.
12.“Ano-nonsenseapproachtosecureAIenablementatAT&T,”DeloitteInsights,Nov.21,2025.
13.KatherineNoyes,“BroadcomCIO:‘Modernizationshouldbedrivenbythebusiness’,”CIOJournal,TheWallStreetJournal,andDeloitte,Sept.10,2025.
14.KatherineNoyes,“UiPathCEO:Agenticautomationwill‘usherinaneweraofwork’,”CIOJournal,TheWallStreetJournal,andDeloitte,Feb.21,2025.
15.KatherineNoyes,“WesternDigitalCIO:IntheAIera,‘Playoffenseorgetleftbehind’,”CIOJournal,TheWallStreet
Journal,andDeloitte,Sept.6,2025.
16.Walmart,“WalmartunveilsnewAI-poweredtoolstoempower1.5millionassociates,”June24,2025.
Innovationcompounds
17.KatherineNoyes,“Coca-ColaCIOonscalingAI:From‘Whatcanwedo?’to‘Whatshouldwedo’,”CIOJournal,TheWallStreetJournal,andDeloitte,Jan.18,2025.
9
AIgoesphysical:NavigatingtheconvergenceofAIandrobotics
Poweredbyartificialintelligence,traditionalrobotsarebecomingadaptivemachinesthatcanoperatein—andlearnfrom—complexenvironments,unlockingsafetyandprecisiongains
JimRowan,TimGaus,FranzGilbert,andCarolineBrown
R
obotspoweredbyphysicalAIarenolongerconfinedtoresearchlabsorfactoryfloors.They’reinspectingpowergrids,assistinginsurgery,navigatingcitystreets,andwork-ingalongsidehumansinwarehouses.Thetransitionfromprototypetoproduction
ishappeningnow.
PhysicalAIreferstoartificialintelligencesystemsthatenablemachinestoautonomouslyperceive,understand,reasonabout,andinteractwiththephysicalworldinrealtime.Thesecapabilitiesshowupinrobots,vehi-cles,simulations,andsensorsystems.Unliketraditionalrobotsthatfollowpreprogrammedinstructions,phys-icalAIsystemsperceivetheirenvironment,learnfromexperience,andadapttheirbehaviorbasedonreal-timedata.Automationalonedoesn’tmakethemrevolution-ary;rather,it’stheircapacitytobridgethegapbetweendigitalintelligenceandthephysicalworld.
Inthenascentbutrapidlyevolvingcategoryofrobots,physicalAIturnsrobotsintoadaptive,learningmachinesthatcanoperateincomplex,unpredictableenviron-ments.ThecombinationofAI,mobility,andphysicalagencyenablesrobotstomovethroughenvironments,performtasks,andinteractwiththeworldinwaysthatfundamentallydifferfromenhancedappliances.Embodiedinroboticsystems,physicalAIisquiteliterallyonthemove.
Today,AI-enableddrones,autonomousvehicles,andotherrobotsarebecomingincreasinglycommon,particu-larlyinsmartwarehousingandsupplychainoperations.Theindustry,regulatorybodies,andpotentialadopters
areworkingtobreakdownbarriersthathinderthedeploymentofsolutionsatscale.Asorganizationsover-comethesechallenges,AI-enabledrobotswilllikelytran-sitionfromnichetomainstreamadoption.Eventually,we’llwitnessphysicalAI’snextevolutionaryleap:thearrivalofhumanoidrobotsthatcannavigatehumanspaceswithunprecedentedcapability.
Fromprototypetoproduction
AIgoesphysical:NavigatingtheconvergenceofAIandrobotics
UnliketraditionalAIsystemsthatoperatesolelyindigi-talenvironments,physicalAIsystemsintegratesensoryinput,spatialunderstanding,anddecision-makingcapa-bilities,enablingmachinestoadaptandrespondtothree-dimensionalenvironmentsandphysicaldynamics.Theyrelyonablendofneuralgraphics,syntheticdatageneration,physics-basedsimulation,andadvancedAIreasoning.Trainingapproachessuchasreinforcementlearningandimitationlearningenablethesesystemstomasterprincipleslikegravityandfrictioninvirtualenvironmentsbeforebeingdeployedintherealworld.
RobotsareonlyoneembodimentofphysicalAI.Italsoencompassessmartspacesthatusefixedcamerasandcomputervisiontooptimizeoperationsinfactoriesandwarehouses,digitaltwinsimulationsthatenablevirtualtestingandoptimizationofphysicalsystems,andsensor-basedAIsystemsthathelphumanteamsmanagecomplexphysicalenvironmentswithoutrequiringroboticmanipulation.
Whereastraditionalrobotsfollowsetinstructions,phys-icalAIsystemsperceivetheirenvironment,learnfrom
10
experience,andadapttheirbehaviorbasedonreal-timedataandchangingconditions.Theymanipulateobjects,navigateunpredictablespaces,andmakesplit-seconddecisionswithreal-worldimplications.Robotdogsprocessacousticsignaturestodetectequipmentfail-uresbeforetheybecomecatastrophic.Factoryrobotsrecalculatetheirrouteswhenproductionschedulesshiftmid-operation.Autonomousvehiclesusesensordatatospotcyclistssoonerthanhumandrivers.Deliverydronesadjusttheirflightpathsaswindconditionschange.Whatmakesthesesystemsrevolutionaryisn’tjusttaskautomationbuttheircapacitytoperceive,reason,andadapt,whichenablesthemtobridgethegapbetweendigitalintelligenceandthephysicalworld.1
TechadvancementsdrivephysicalAI–roboticsintegration
PhysicalAIisreadyformainstreamdeploymentbecauseoftheconvergenceofseveraltechnologiesthatimpacthowrobotsperceivetheirenvironment,processinfor-mation,andexecuteactionsinrealtime.
Vision-language-actionmodels.PhysicalAIadoptstrain-ingmethodsfromlargelanguagemodels(LLMs)whileincorporatingdatathatdescribesthephysicalworld.Multimodalvision-language-action(VLA)modelsintegratecomputervision,naturallanguageprocess-ing,andmotorcontrol.2Likethehumanbrain,VLAmodelshelprobotsinterprettheirsurroundingsandselectappropriateactions(figure1).
Onboardcomputingandprocessing.Neuralprocess-ingunits—specializedprocessorsoptimizedforedgecomputing—enablelow-latency,energy-efficient,real-timeAIprocessingdirectlyonrobots.OnboardcapabilityallowsphysicalAIsystemstorunLLMsandVLAmodels,processhigh-speedsensordata,andmakesplit-second,safety-criticaldecisionswithoutclouddependency—essentialforautonomousvehicles,indus-trialrobotics,andremotesurgery.3Itcanalsotransformrobotsfromisolatedmachinesintoautonomoussystemsthatcanshareknowledgeandcoordinateactionsacrossintelligentnetworks.
Roboticsadvancementshavemaderobotsmoreacces-sibleandcapable:4
•Computervisionfor“seeing”andunderstandingsurroundings
•Sensorsforcapturinginformationsuchassound,light,temperature,andtouch
•Actuatorsformovement,inspiredbyhumanmuscles
•Spatialcomputingfornavigating3Denvironments
•Improvedbatteriesthatenablelongeroperationwithoutfrequentrecharging
Trainingandlearning.Inreinforcementlearning,robotsdevelopsophisticatedbehaviorsthroughtrialanderror
Figure1
Action
Motorcontrolsystemsexecutephysicaltasksbasedonvisualinputandlinguisticinstructions
Howvision-language-actionmodelswork
Vision
Computervisionsystemsinterpretvisual
environmentsandidentifyobjects,obstacles,andspatialrelationships
>
Language
Naturallanguageprocessingunderstandshumancommandsandcancommunicateintentions
Source:Deloi廿eanalysis.
11
byreceivingrewardsorpenalties.Inimitationlearning,robotsmimicexpertdemonstrations.Bothapproachescanbeappliedinsimulatedenvironmentsorinthephysicalworldwithrealhardware.5Ablendofthesetechniques,startingwithsimulation-basedreinforce-menttrainingandthenfine-tuningwithtargetedphys-icaldemonstrations,cancreatecontinuouslearningloops.Thishelpsrobotscontinuetoimprovebyfeedingreal-worlddatabackintotheirtrainingpoliciesandsimulationspaces.6
Compellingeconomicsboostindustrialadoption
Astechnologyadvances,costshavebeencomingdown,andmanyreal-worldapplicationshaveemerged.
AdvancedmanufacturinginfrastructurenowsupportstheproductionofcomplexroboticsandphysicalAIsystemsatenterprisescale.ThismeansthatphysicalAIrobotscannowbeproducedwiththereliabilityandqualitycontrolofsmartphonesorcars,makingthempracticalforeverydayindustrialuse.
Componentcommoditizationandopen-sourcedevelop-mentarereducingentry
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 19276.1-2003水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法》
- 节能镇流器项目可行性研究报告(立项备案申请)
- 酒店管理专业面试题及参考答案手册
- 年产xxx干燥器项目可行性分析报告
- 带表角度尺项目可行性分析报告范文
- 型球阀项目可行性分析报告范文
- 深度解析(2026)GBT 18838.1-2002涂覆涂料前钢材表面处理 喷射清理用金属磨料的技术要求 导则和分类
- 年产xxx大棚膜吹膜机项目可行性分析报告
- 特殊人群贝叶斯剂量调整方案
- 供应链专员面试题及采购流程含答案
- Science and Technology科学与技术课件
- 电梯形式检测报告
- 脱硝催化剂拆除及安装(四措两案)
- GB/T 19867.6-2016激光-电弧复合焊接工艺规程
- 第八章散粮装卸工艺
- PET-成像原理扫描模式和图像分析-课件
- 体外诊断试剂工作程序-全套
- 施工企业管理课件
- DB32 4181-2021 行政执法案卷制作及评查规范
- JJF (苏) 178-2015 防潮柜温度、湿度校准规范-(现行有效)
- 创伤急救四大技术共46张课件
评论
0/150
提交评论