版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RenewablesforIndustry
Electrificationoflow-temperatureheatandsteam
INTERNATIONALENERGYAGENCY
TheIEAexaminesthefullspectrum
ofenergyissues
includingoil,gasand
coalsupplyand
demand,renewable
energytechnologies,
electricitymarkets,
energyefficiency,
accesstoenergy,
demandside
managementandmuchmore.Throughitswork,theIEAadvocates
policiesthatwillenhancethereliability,
affordabilityand
sustainabilityofenergyinits
32Membercountries,13Associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationof
internationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
Source:IEA.
InternationalEnergyAgencyWebsite:
IEAMembercountries:
Australia
Austria
Belgium
Canada
CzechRepublicDenmark
Estonia
Finland
France
GermanyGreece
HungaryIreland
ItalyJapanKoreaLatvia
Lithuania
LuxembourgMexico
Netherlands
NewZealandNorway
Poland
Portugal
SlovakRepublicSpain
Sweden
Switzerland
RepublicofTürkiyeUnitedKingdom
UnitedStates
TheEuropean
CommissionalsoparticipatesintheworkoftheIEA
IEAAssociationcountries:
ArgentinaBrazil
ChinaEgyptIndia
Indonesia
Kenya
Morocco
Senegal
Singapore
SouthAfricaThailand
Ukraine
RenewablesforIndustryElectrificationoflow-temperatureheatandsteamAbstract
IEA.CCBY4.0.
PAGE|3
Abstract
Industryisresponsiblefor30%ofglobalenergyconsumption,mostofwhichissuppliedbyfossilfuels.Thefocusofindustrialdecarbonisationhaslargelybeenonthesteelandcementsectors,butsignificantpotentialalsoexistsinlessenergy-intensivesectorssuchasfoodandbeverages,textiles,chemicals,paper,andothermanufacturingactivities.Thesesectorsoffersomeofthemostimmediateandcost-effectiveopportunitiesforindustrialdecarbonisationanddiversificationofenergysources.Commerciallyavailableelectrictechnologiesincludingheatpumps,electricboilersandresistanceheaterscanmeetmostheatdemandinthesesubsectors.
Widespreadelectrificationoflow-temperatureheatandsteaminindustry,coupledwithincreasingdeploymentofrenewableelectricitysupply,candelivermultiplebenefits.Inadditiontoreducingfossilfueluseandassociatedemissions,itcanimproveenergysecuritybyloweringexposuretovolatilegasandoilpricesand,whenintegratedwiththermalstorage,itcancreatedemandflexibilitythathelpsensureahighershareofvariablerenewablegeneration.
Thisreportexploreshowtoexpandtheroleofrenewablesintheindustrialenergymixthroughelectrificationoflow-temperatureheatandsteam.ItfocusesontheEuropeanUnion,ChinaandtheAssociationofSoutheastAsianNations(ASEAN),examiningtheirtechno-economicpotentialandexistingpolicyenvironments.Finally,thereportproposespriorityactionareasforacceleratingindustrialheatelectrification.
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamTableofcontents
IEA.CCBY
PAGE|4
Acknowledgements,contributorsandcredits
ThisreportwaspreparedbytheRenewableEnergyDivision(RED)oftheInternationalEnergyAgency.ThestudywasdesignedanddirectedbyIlkkaHannula,LeadAuthorandSeniorEnergyAnalyst.Principalcontributorswere(inalphabeticalorder)ElisaAsmelashandMartinaLyons.OtherIEAcolleagueswhocontributedtothisworkincludeFrancoisBriens(formerIEA),EthanBurkleyandBrieucNerincx.
PaoloFrankl,HeadoftheRenewableEnergyDivision,providedstrategicguidanceandinputtothiswork.ValuablecommentsandfeedbackwereprovidedbyseniormanagementKeisukeSadamori,BrianMotherway,TimurGuel,DennisHesseling,andAraceliFernandezPalesandcolleagueswithintheIEA(inalphabeticalorder):HeribBlanco,RafaelGordonMartinez,NathalieKauf,PatrickMcMaster,EmmaMooney,IsaacPortugal,RichardSimon,FabianVoswinkelandJacquesWarichet.
WethankJaniceGriffithsfortheediting.ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoAstridDumondandLivGaunt.
Thereportbenefitedfromdiscussionsduringtwoworkshops:theIEAElectrificationofIndustrialHeat:OpportunitiesforRenewablesWorkshop,whichfocusedontheEuropeanUnionandChina(December2024)andUnlockingtheBenefitsofRenewablesforConsumers.AretheCostSavingsfromRenewablesReflectedinRetailElectricityPrices?(April2025).
ManyexpertsfromoutsideoftheIEAprovidedvaluableinput,commentedandreviewedthisreport.Theyinclude:
4.0.
Alcoa(KarinDahlman),ArmstrongInternational(RossenIvanov),ASEANCentreforEnergy(ZulfikarnYurnaidi),AsianDevelopmentBank(PradeepTharakan),AssociationofSwedishEngineeringIndustries(OskarKvarnstrom),AustraliaDepartmentofClimateChange,Energy,EnvironmentandWater(StevenKenihan),AustrianInstituteofTechnology(SabrinaDusekandVeronikaWilk),ChinaHeatPumpAlliance(HengyiZhao),ChineseAcademyofScienceShenzhenInstituteofAdvancedTechnology(WeiFeng),Coolbrook(JoonasRauramoandVilleValiaho),DanishTechnologicalInstitute(BenjaminZuehlsdorf),EnergyInnovation(JeffreyRissman,SonaliDeshpande,NikSawe),EnergyStorageEuropeAssociation(LetiziaStorchi),Eurelectric(PaulWilczek),
RenewablesforIndustryElectrificationoflow-temperatureheatandsteamTableofcontents
IEA.CCBY4.0.
PAGE|5
EuropeanCommission(LeldeKiela-Vilumsone,RuudKempener,SebastianSterl),EuropeanHeatPumpAssociation(JozefienVanbecelaere),Iberdrola(FranciscoLaveronandSamuelPerez),IEATCPThermalEnergyStorage(GeoffroyGauthrier),InstitutFrançaisdesRelationsInternationales(CédricPhilibert),InternationalFinanceCorporation(VieraFeckova),LawrenceBerkeleyNationalLav(HongyouLuandBoShen),LongDurationEnergyStorageCouncil(JuliaSouder),MagaldiGreenEnergy(LetiziaMagaldi),NetherlandsOrganisationforAppliedScientificResearchTNO(KiraWest),NationalLaboratoryoftheRockies(DoughArent),OECD(CecileSeguineaud),RAPOnline(SemOxenaar),RenewableThermalCollaborative(DanielGalisandRuthChecknoff),Ricardo(NicoloFarne),Rondo(MarkMeldrumandJohnODonnell),SchneiderElectric(SilviaMadeddu),Trinomics(JoaoDedecca),UniversidaddeMalaga(JuanPabloJimenez),UNIDO(SarbojitPal)andWWFCoolandSolarProgramme(RichardScotney).
Inadditiontothepeerreviewprocess,thisreportalsobenefittedgreatlyfromdiscussionswithotherexpertsonkeytopics:BeyondFossilFuels(TaraConnollyandJulietPhillips),Exergie(TomasCaha)ansdQvantumIndustries(ThomasNowak)andSiemensEnergy(ChristianHuettl).
Thisworkwassupportedbythe
CleanEnergyTransitionsProgramme
,theIEA’sflagshipinitiativetotransformtheworld’senergysystemtoachieveasecureandsustainablefutureforall.
RenewablesforIndustryElectrificationoflow-temperatureheatandsteamTableofcontents
IEA.CCBY4.0.
PAGE|6
Tableofcontents
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamforCDO1
Abstract 3
Acknowledgements,contributorsandcredits 4
Tableofcontents 6
ExecutiveSummary 8
Chapter1.Introduction 12
Industrialenergyuse 12
Industrialenergyprices 18
Industrialelectricityuse 19
Casefortheelectrificationofindustrialheat 21
Chapter2.Electrificationofheat 24
Overview 24
Heatpumps 27
Electricboilers 29
High-temperaturesystems 30
Thermalenergystoragesystems 31
Chapter3.Regionalinsights:EuropeanUnion 34
Stateofplay 34
Technicalelectrificationpotential 36
Spatialanalysis 40
Costanalysisforfocuscountries 43
Marketandpolicy 50
Chapter4.Regionalinsights:Chinaandselectedprovinces 58
Stateofplay 58
Technicalelectrificationpotential 60
Costanalysis 63
Marketandpolicy 67
Chapter5.Spotlight:ASEANregion 73
Stateofplay 73
Tableofcontents
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam
IEA.CCBY4.0.
PAGE|7
Technicalelectrificationpotential 75
Costanalysis 75
Marketandpolicy 78
Chapter6.Conclusionsandprioritiesforaction 83
Annex 92
Abbreviations 92
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamExecutivesummary
IEA.CCBY4.0.
PAGE|8
Executivesummary
Electrificationofheatcanimproveefficiency,helpdiversifyindustrialenergy,andenhanceenergysecurity
Abroadrangeofindustriesthatdependprimarilyonlow-temperatureheatandsteamprocessesrepresentroughly70%ofglobalindustrialenergyconsumption.Theyspandiversemanufacturingactivities–fromfoodandbeveragestotextiles,chemicals,transportequipment,woodproductsandpaper.In2023,thesesectorsemittednearly3Gtofdirectenergy-relatedCO:,accountingforhalfofalldirectindustrialemissions,althoughemissionshavedeclinedbyaround8%since2013.
Industrialenergyuseislargelyintheformofheatandisincreasinglybeingsuppliedfromelectricity.Overthepastdecade,globaluseofelectricityforindustrialheathasaccelerated,withthePeople’sRepublicofChina(hereafter,“China”),IndiaandtheAssociationofSoutheastAsianNations(ASEAN)recordingthelargestincreases.Despitedifferingindustrialstructures,allmajoreconomieshaveconvergedtowardsimilarelectricitysharesforindustrialheatofaround4–5%.Increaseduptakeisbeingdrivenbyimprovingcostcompetitiveness,expandingtechnologyavailabilityandstrongerpolicysignals,alongsidethebenefitsofreducingexposuretovolatilefossilfuelprices.
Renewablesarerapidlytransformingpowersystemsaroundtheworld,leadingtoahighershareofrenewablesintheindustrialmixviaheatelectrification.Thislinkagebetweenindustrialelectricitydemandandgrowingrenewablegenerationisbecominganimportantdriverofdecarbonisationacrossindustrialsectors.Itcontributestogreatersystemflexibility,strengthensenergysecuritybyreducingdependenceonfossilfuelimports,andfosterseconomicgrowth,industrialisationandemployment.
Low-temperatureindustrialheatandsteamarereadyforelectrification,butmarket
conditionsarenotyetinplace
Improvingenergyefficiencyisthefoundationalstepinpreparingfortheelectrificationoflow-temperatureheatandsteam.Energyefficiencymeasuresloweroverallheatdemand,reducelossesandtherebyenablesmaller,morecost-effectiveelectrificationsolutions.Inmanyindustrialfacilities,basicoptimisationsuchasrecoveringandeffectivelyusingwaste
IEA.CCBY
PAGE|9
heat,improvinginsulation,enhancingprocesscontrolandplant-levelthermaloptimisationcandeliverimmediatereductionsinfuelconsumptionatcomparativelylowcost.Thesemeasuresnotonlycutemissionsbutalsoreducethescaleofinvestmentrequiredforelectricheatingtechnologies.Prioritisingefficiencythereforemaximisestheimpactofsubsequentelectrificationeffortsandstrengthensthebusinesscaseforswitchingfromfossilfuels.
Industrialheatpumpsandelectricboilersarecommerciallyavailabletechnologiesforheatelectrificationbutfaceseveralstructuralbarriers.Large-scaleindustrialheatpumpsarewellestablishedtodeliverheatupto150°C,whileelectricboilerscangeneratesteamupto350°Candpressureofaround70bar.However,technologydeploymenthasremainedlimitedduetounfavourableelectricity-to-gaspriceratios,longgridconnectionleadtimesandtheabsenceofclearpolicyframeworks.Supportivepoliciesareonlynowgainingmomentum,butstrongersignalsarestillneeded.
Thermalstorageistheenablingtechnologythatcanconnectlow-costvariablerenewableelectricitysupplywithcontinuousindustrialheatdemand.Thermalstoragesystemscanbebuiltfromlow-cost,simplematerialssuchassand,cementandbricksandcanstoreheatupto1000°C.AtaroundUSD15-20perkWh,theyaresignificantlycheaperthanchemicalbatteriesanddon’trelyonglobalsupplychainsforcriticalminerals.Whilstthemarketforthermalenergystorageforindustrialapplicationsisstilldeveloping,projectsareemergingacrossmultipleregions.
Asetofdriversunderpinsmomentumacrossworldregions.
ElectrifyingindustrialheatwithrenewablescanenhanceenergysecurityintheEuropeanUnion(EU).Electrificationofindustrialprocessesthroughheatpumpsande-boilershasthetechnicalpotentialtoreducetheEU’sindustrialfossilfuelusebyalmost3000PJ.Directuseofnaturalgasforindustrialheatcouldbereducedby35bcm/yr,diversifyingenergyuseandimprovingthecontinent’senergysecurity.Substitutingnaturalgasandotherfossilfuelswithelectricityatthisscalewouldhoweverimplyaround600TWh/yrofadditionalelectricitydemand,comparabletothecombinedannualelectricityconsumptionofGermanyandtheNetherlands.
4.0.
IndustrialheatpumpsareeconomicallyattractivecomparedtoexistinggasboilersinseveralEUmemberstates.Therangeis,however,wideat41-74EUR/MWh,reflectingdifferencesinelectricityprices,andinapproachestoenergytaxationandnetworkcostallocationamongtheexaminedcountries.Electricboilersremainmoreexpensiveduetotheirlowerefficiency,althoughtheyareincreasinglyfindingmarketsinNorthernEuropethankstotheregion’slowelectricity-to-gaspriceratiosandtaxationthatisfavourabletowardselectrification.Addingthermalstoragewouldenhancethecostcompetitivenessofe-boilersbyreducingexposuretopeakpowerprices,whileimprovingoperationalflexibility
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamExecutivesummary
IEA.CCBY
PAGE|10
andoverallenergyefficiency.PolicymomentumforindustrialheatelectrificationintheEUisbuildingintheformofrenewableheatingtargetsandfundinginstrumentsbutremainsinearlystages.
Chinaisacceleratingtheelectrificationofindustrialheatusethrougharangeofpolicies.Electrificationoflow-temperatureheatandsteamhastechnicalpotentialtoreduceChina’sindustrialfossilfuelusebyalmost9000PJ.Directnaturalgasusecouldbereducedby48bcm,reducingthecountry’sstrongimportdependence.Inparallel,realisingthetechnicalpotentialwouldincreaseelectricitydemandby1700TWh,whichiscomparabletotheforecastgrowthinChina’ssolarPVelectricitygenerationbetweentodayand2030.
DirectuseofsolarPVandwind,coupledwiththermalstorage,createsnewopportunitiesforheatelectrificationinChina.Connectingindustrialconsumersdirectlytocaptiverenewablepowergenerators(i.e.,solarPV,windonshoreorhybrid)couldalmosthalveheatelectrificationcostsforsteamfromUSD70-100/MWh(grid-connected)toaroundUSD50/MWhintheexaminedprovinces.Grid-connectedindustrialheatpumpsareattractivetodaycomparedtonaturalgasboilers,butstrugglewhilecheapdomesticcoalisavailableasaheatsource.
Chinaisacceleratingindustrialheatelectrificationthroughitscarbonneutralitytargetsandthroughcoordinatingnationalandprovincialpolicies.The14thFive-YearPlan,sectoralenergyefficiencyplans,heatpumpandelectricboileractionplans,financialsupportprogrammes,andgridreformsprovidestrongsupportfordeployment.However,manytargetedpoliciesstillfocusonenergy-intensiveindustries,leavinganopportunitytoexpandtheirscopetoallindustrialsectors.
IndustrialparksplayacentralroleintheASEANindustrylandscapeandcouldbecomedriversofheatelectrificationintheregion.Regionalvisionsandplanssupportrenewables,energyefficiency,andgreenindustrialhubs,yetstillfocusonenergy-intensivesectors.Capitalcosts,gridconstraints,andlimitedaccesstofinancehinderdeployment,particularlyinmanufacturinghubssuchasIndonesia,Malaysia,ThailandandVietNam.Expandingpolicyandfinancialsupporttoallindustrialsectors,alongsidetargeteddemonstrationprojectsandelectricitymarketreform,couldacceleratedeploymentofheatpumps,electricboilersandthermalstorage.
Policypriorityareastoacceleratedeployment
Whileseveraldriversexist,globalpolicymomentumisincreasingbutremainsinearlystages.Tohelpacceleratetheelectrificationofindustriallow-temperatureheatandsteam,theIEArecommendsthefollowingsixpriorityactions:
4.0.
1.Elevateheatelectrificationintothepolicyagendaandintegrateitintoindustrialroadmapsandtargetswithinbroaderenergygoals,whilekeepinga
RenewablesforIndustryElectrificationoflow-temperatureheatandsteamExecutivesummary
IEA.CCBY4.0.
PAGE|11
technology-openapproachaimingatfosteringawideportfolioofpossiblepathways.
2.Anticipateheatelectrificationinlong-termgridplanningandprioritiseconnectionrequestswithdemandsideflexibilitytopreventcapacityshortagesandreduceprojectdelays.
3.Reformelectricitytaxesandleviestoleveltheplayingfieldwithfossilfuelsandrewardflexibleindustrialdemand,possiblythroughlowernetworktariffs.
4.Providetargetedearlysupportforcapitalandoperationalcostsandenableinnovativebusinessmodelstoacceleratetheroll-outofheatelectrificationtechnologies.
5.Enhanceskillsandworkforcedevelopmentbyexpandingeducationandtrainingprogrammesandcertificationschemestomeetthegrowingdemandforindustrialelectrificationexpertise.
6.Promoteinternationalcollaborationontechnicalstandardframeworkstofacilitateequipmentinteroperability,broaderadoptionofstandardsandachieveeconomiesofscale
RenewablesforIndustry
Chapter1.Introduction
Electrificationoflow-temperatureheatandsteam
IEA.CCBY4.0.
PAGE|12
Chapter1.Introduction
Industrialenergyuse
Theindustrialsectorplaysavitalroleinshapingtheglobaleconomyandoureverydaylives.In2024,itrepresented
one-quarterofglobalgrossdomestic
product(GDP)
andisakeydriverofeconomicgrowthanddevelopment.Inthesameyear,italsoemployed
one-quarteroftheworldsworkforce
,supportingmillionsofjobsacrossdiverseskillsetsandprofessions.Industryproducesmanyessentialtoolsandproductsthatpeoplerelyonintheirdailylives,fromthepackagingthatprotectsandpreservesfoodandbeveragestothetextilesusedinclothingandfurniture,andthecementthatformsthefoundationofhomes,officesandpublicinfrastructure.
Theindustrialsectorisalsoasignificantuserofenergy.Itisresponsiblefor30%ofglobalconsumption,asharethathasremainedlargelystableoverthepastdecade,despiteanincreaseintotalindustrialenergyusefrom116exajoules(EJ)in2012to129EJin2023.
Buildings
28%
Industry
30%
429EJ
Other14%
Transport29%
Figure1.1Globalfinalenergyconsumptionandshareofindustryenergyconsumption,2023
Other
manufacturing
industries
71%
Iron,steelandnon-
metallicminerals
29%
IEA.CCBY4.0.
Notes:EJ=exajoule.Buildingsincluderesidential,commercialandpublicservicesectors.Otherincludesagriculture,forestry,fishing,finalconsumptionnotelsewherespecifiedandnon-energyusesoutsideindustry.Othermanufacturingindustriesincludeminingandquarrying,construction,manufacturing,chemicalsandpetrochemicals,non-ferrousmetals,transportequipment,machinery,food,beveragesandtobacco,pulp,paperandprinting,woodandwoodproducts,textileandleather,andnon-energyuseinchemicals.Non-metallicmineralsincludecement,glass,ceramicsandclay.Ironandsteelenergyconsumptionexcludesenergyuseinblastfurnacesandcokeovens.
RenewablesforIndustry
Chapter1.Introduction
Electrificationoflow-temperatureheatandsteam
IEA.CCBY4.0.
PAGE|13
Ironandsteelmaking,alongwiththeproductionofnon-metallicmineralssuchascement,glassorclay,areamongthoseindustrialsubsectorsthathaveanoutsizedimpactonindustrialenergyuseandemissions.Togethertheyaccountfornearly30%oftotalindustrialenergydemand(Figure1.1).Theremaining70%isgenerallycharacterisedbylowerenergyandcarbonemissionsintensities.Thethermalenergydemandinthissegmentispredominantlyforlow-temperatureheatandsteam.
Box1.1Electrificationpathwaysandusesofheatcoveredinthisreport
Thisreportfocusesonelectrificationpathwaysthatcandisplacefossilfueluseintheproductionoflow-temperatureheatandsteam.Theanalysisconcentratesespeciallyontwotechnologyfamiliesindustrialheatpumpsandelectricboilersthatarebothmatureandmarketreadyforelectrifyingheatdemandinthenearterm.
Thereportalsoexploreselectro-thermalenergystorage(ETES)technologiesthatcanshiftgridelectricityconsumptionfrompeakpriceperiodstolowerdemandperiodswithlowerprices,andthatcanalternativelyprovideaflexible,dispatchableheatsupplyfromvariablerenewableenergysourcessuchaswindandsolarphotovoltaic(PV)systems.
Thereportsscopedoesnotincludehigh-temperatureprocesses,suchascalcination,reformingandcracking.Althoughelectrificationoptionsfortheseprocessesareadvancing,theirdeploymentconditions,equipmentrequirementsandcostprofilesdiffersubstantiallyfromlow-temperatureapplicationsandarethereforenotaddressedinthisreport.
Thereportalsoexcludesearlystageoremergingtechnologiesthathaveseenpromisingdevelopmentsinrecentyearsbutarenotyetatthelevelofmarketmaturitysuitableforbroadindustryuptake.Thefocusisinsteadontechnologieswithestablishedsupplychains,demonstratedindustrialoperationandclearpathwaysforshort-termscale-up.
Thereportgroupsindustriesinaccordancewithprocessheattemperaturerequirementsratherthanintheconventionalhard-to-abateorlightindustrycategories.Iron,steelandnon-metallicmineralsarecategorisedashigh-temperatureheatindustriesthatrequireveryhighheatforprocessessuchasmelting,calciningorsintering.Othermanufacturingindustries(textile,food,beverages,papermaking,etc.)typicallyrelyonlow-temperatureheatandsteam.Thistemperature-basedgroupingunderpinstheassessmentoftechnologyoptionsandpolicyconsiderationsthroughoutthereport.FurthermethodologicaldetailsareprovidedinChapter2.
Chapter1.Introduction
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam
IEA.CCBY4.0.
PAGE|14
Severalabatementoptionsareavailableforlow-temperatureheatandsteamuse,forexample,electricalheating,solarthermalenergy,geothermalenergyandbioenergy(Box1.2).However,fossilfuelsremaintheprimaryindustrialenergysourceworldwidetoday,althoughenergymixesvaryfromoneregiontoanother.Forexamples,inChinaandthe11memberstatesformingtheAssociationofSoutheastAsianNations(
ASEAN
),industrialenergyuseisdominatedbycoal.Theuseofcoalislargelydrivenbyabundantdomesticresourcesthatcanprovideheattoenergy-intensiveindustriesatlowcostandwithsupplysecurityadvantagescomparedwithotherenergysources(Figure1.2).
IndustryintheEuropeanUnion,ontheotherhand,isrelativelygasdependent.Ataround30%,theshareofnaturalgasinoverallindustrialenergyconsumptionintheEuropeanUnionisclosertolevelsseeninmajorgasproducingcountries–theUnitedStatesat40%ortheRussianFederation(hereafter“Russia”)at20%.Inlargegas-importingeconomiessuchasJapanorChina,theshareislessthan15%.Thiscontrastreflectsdifferencesinsupplyconditions:liquifiednaturalgas(LNG)importswouldbemorecostlyforbothJapanandChinawhereasEurope,untilrecently,benefitedfromrelativelycheappipelinegasfromRussia.
Figure1.2Energyuseintheiron,steelandnon-metallicmineralindustries,andin
RestofEuropeanUnited
worldJapanASEANUnionStatesChina
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
Iron,steelandnon-metallicmineralsOthermanufacturingindustries
othermanufacturingindustries,inmajoreconomies,2023
0510152025303540EJ
CoalandpeatOilandoilproductsNaturalgasBiofuelsandwasteElectricityDistrictheating
IEA.CCBY4.0.
Notes:EJ=exajoule.Non-metallicmineralsincludecement,glass,ceramicsandclay.Ironandsteelenergyconsumptionexcludesenergyuseinblastfurnacesandcokeovens.Otherindustriesincludeminingandquarrying,construction,manufacturing,chemicalsandpetrochemicals,non-ferrousmetals,transportequipment,machinery,food,beveragesandtobacco,pulp,paperandprinting,woodandwoodproducts,textileandleatherandnon-energyuseinchemicals.
Chapter1.Introduction
RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam
In2023,industryaccountedfor18%ofglobaldirectenergy-relatedCO2emissions,orjustover6gigatonnes
1
(Gt)ofCO2,representinga2%declinesince2013(Figure1.3).Whenincludingindirectenergy-relatedCO2emissionsfromheatandelectricityuse,totalenergy-relatedCO2emissionsmorethandoubletoapproximately12.5Gt.Inaddition,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国科学院高能物理研究所AI应用工程师岗位招聘备考题库带答案详解
- 2025年新蔡辅警招聘真题及答案
- 黑龙江公安警官职业学院《计算机基础与C语言》2024-2025学年期末试卷(A卷)
- 黑龙江公安警官职业学院《日本文学选读》2025 学年第二学期期末试卷
- 2025年湘科研究院招聘专业技术人员5名备考题库有答案详解
- php域名管理系统课程设计
- 2025中国农业大学水利与土木工程学院科研助理招聘1人备考笔试试题及答案解析
- Android 贪吃蛇课程设计
- 2025年5G网络覆盖范围扩大与物联网应用场景行业报告
- 《CBT 3701-1995船用齿轮泵修理技术要求》专题研究报告深度解读
- 国家安全生产公众号
- 2025年中国多深度土壤水分传感器行业市场全景分析及前景机遇研判报告
- 2025档案管理职称考试题库及答案
- 眼科护理读书报告
- 贵州防空工程管理办法
- 外墙真石漆合同补充协议
- HJ 75-2017固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范
- 河南省工会经费管理办法
- 物业新项目接管计划
- 印刷设备电路与控制课件
- 技术服务支持年度工作总结
评论
0/150
提交评论