IEA国际能源署:2025年工业领域可再生能源应用:低温热能及蒸汽电气化研究报告(英文版)_第1页
IEA国际能源署:2025年工业领域可再生能源应用:低温热能及蒸汽电气化研究报告(英文版)_第2页
IEA国际能源署:2025年工业领域可再生能源应用:低温热能及蒸汽电气化研究报告(英文版)_第3页
IEA国际能源署:2025年工业领域可再生能源应用:低温热能及蒸汽电气化研究报告(英文版)_第4页
IEA国际能源署:2025年工业领域可再生能源应用:低温热能及蒸汽电气化研究报告(英文版)_第5页
已阅读5页,还剩168页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

RenewablesforIndustry

Electrificationoflow-temperatureheatandsteam

INTERNATIONALENERGYAGENCY

TheIEAexaminesthefullspectrum

ofenergyissues

includingoil,gasand

coalsupplyand

demand,renewable

energytechnologies,

electricitymarkets,

energyefficiency,

accesstoenergy,

demandside

managementandmuchmore.Throughitswork,theIEAadvocates

policiesthatwillenhancethereliability,

affordabilityand

sustainabilityofenergyinits

32Membercountries,13Associationcountriesandbeyond.

Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationof

internationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.

Source:IEA.

InternationalEnergyAgencyWebsite:

IEAMembercountries:

Australia

Austria

Belgium

Canada

CzechRepublicDenmark

Estonia

Finland

France

GermanyGreece

HungaryIreland

ItalyJapanKoreaLatvia

Lithuania

LuxembourgMexico

Netherlands

NewZealandNorway

Poland

Portugal

SlovakRepublicSpain

Sweden

Switzerland

RepublicofTürkiyeUnitedKingdom

UnitedStates

TheEuropean

CommissionalsoparticipatesintheworkoftheIEA

IEAAssociationcountries:

ArgentinaBrazil

ChinaEgyptIndia

Indonesia

Kenya

Morocco

Senegal

Singapore

SouthAfricaThailand

Ukraine

RenewablesforIndustryElectrificationoflow-temperatureheatandsteamAbstract

IEA.CCBY4.0.

PAGE|3

Abstract

Industryisresponsiblefor30%ofglobalenergyconsumption,mostofwhichissuppliedbyfossilfuels.Thefocusofindustrialdecarbonisationhaslargelybeenonthesteelandcementsectors,butsignificantpotentialalsoexistsinlessenergy-intensivesectorssuchasfoodandbeverages,textiles,chemicals,paper,andothermanufacturingactivities.Thesesectorsoffersomeofthemostimmediateandcost-effectiveopportunitiesforindustrialdecarbonisationanddiversificationofenergysources.Commerciallyavailableelectrictechnologiesincludingheatpumps,electricboilersandresistanceheaterscanmeetmostheatdemandinthesesubsectors.

Widespreadelectrificationoflow-temperatureheatandsteaminindustry,coupledwithincreasingdeploymentofrenewableelectricitysupply,candelivermultiplebenefits.Inadditiontoreducingfossilfueluseandassociatedemissions,itcanimproveenergysecuritybyloweringexposuretovolatilegasandoilpricesand,whenintegratedwiththermalstorage,itcancreatedemandflexibilitythathelpsensureahighershareofvariablerenewablegeneration.

Thisreportexploreshowtoexpandtheroleofrenewablesintheindustrialenergymixthroughelectrificationoflow-temperatureheatandsteam.ItfocusesontheEuropeanUnion,ChinaandtheAssociationofSoutheastAsianNations(ASEAN),examiningtheirtechno-economicpotentialandexistingpolicyenvironments.Finally,thereportproposespriorityactionareasforacceleratingindustrialheatelectrification.

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamTableofcontents

IEA.CCBY

PAGE|4

Acknowledgements,contributorsandcredits

ThisreportwaspreparedbytheRenewableEnergyDivision(RED)oftheInternationalEnergyAgency.ThestudywasdesignedanddirectedbyIlkkaHannula,LeadAuthorandSeniorEnergyAnalyst.Principalcontributorswere(inalphabeticalorder)ElisaAsmelashandMartinaLyons.OtherIEAcolleagueswhocontributedtothisworkincludeFrancoisBriens(formerIEA),EthanBurkleyandBrieucNerincx.

PaoloFrankl,HeadoftheRenewableEnergyDivision,providedstrategicguidanceandinputtothiswork.ValuablecommentsandfeedbackwereprovidedbyseniormanagementKeisukeSadamori,BrianMotherway,TimurGuel,DennisHesseling,andAraceliFernandezPalesandcolleagueswithintheIEA(inalphabeticalorder):HeribBlanco,RafaelGordonMartinez,NathalieKauf,PatrickMcMaster,EmmaMooney,IsaacPortugal,RichardSimon,FabianVoswinkelandJacquesWarichet.

WethankJaniceGriffithsfortheediting.ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoAstridDumondandLivGaunt.

Thereportbenefitedfromdiscussionsduringtwoworkshops:theIEAElectrificationofIndustrialHeat:OpportunitiesforRenewablesWorkshop,whichfocusedontheEuropeanUnionandChina(December2024)andUnlockingtheBenefitsofRenewablesforConsumers.AretheCostSavingsfromRenewablesReflectedinRetailElectricityPrices?(April2025).

ManyexpertsfromoutsideoftheIEAprovidedvaluableinput,commentedandreviewedthisreport.Theyinclude:

4.0.

Alcoa(KarinDahlman),ArmstrongInternational(RossenIvanov),ASEANCentreforEnergy(ZulfikarnYurnaidi),AsianDevelopmentBank(PradeepTharakan),AssociationofSwedishEngineeringIndustries(OskarKvarnstrom),AustraliaDepartmentofClimateChange,Energy,EnvironmentandWater(StevenKenihan),AustrianInstituteofTechnology(SabrinaDusekandVeronikaWilk),ChinaHeatPumpAlliance(HengyiZhao),ChineseAcademyofScienceShenzhenInstituteofAdvancedTechnology(WeiFeng),Coolbrook(JoonasRauramoandVilleValiaho),DanishTechnologicalInstitute(BenjaminZuehlsdorf),EnergyInnovation(JeffreyRissman,SonaliDeshpande,NikSawe),EnergyStorageEuropeAssociation(LetiziaStorchi),Eurelectric(PaulWilczek),

RenewablesforIndustryElectrificationoflow-temperatureheatandsteamTableofcontents

IEA.CCBY4.0.

PAGE|5

EuropeanCommission(LeldeKiela-Vilumsone,RuudKempener,SebastianSterl),EuropeanHeatPumpAssociation(JozefienVanbecelaere),Iberdrola(FranciscoLaveronandSamuelPerez),IEATCPThermalEnergyStorage(GeoffroyGauthrier),InstitutFrançaisdesRelationsInternationales(CédricPhilibert),InternationalFinanceCorporation(VieraFeckova),LawrenceBerkeleyNationalLav(HongyouLuandBoShen),LongDurationEnergyStorageCouncil(JuliaSouder),MagaldiGreenEnergy(LetiziaMagaldi),NetherlandsOrganisationforAppliedScientificResearchTNO(KiraWest),NationalLaboratoryoftheRockies(DoughArent),OECD(CecileSeguineaud),RAPOnline(SemOxenaar),RenewableThermalCollaborative(DanielGalisandRuthChecknoff),Ricardo(NicoloFarne),Rondo(MarkMeldrumandJohnODonnell),SchneiderElectric(SilviaMadeddu),Trinomics(JoaoDedecca),UniversidaddeMalaga(JuanPabloJimenez),UNIDO(SarbojitPal)andWWFCoolandSolarProgramme(RichardScotney).

Inadditiontothepeerreviewprocess,thisreportalsobenefittedgreatlyfromdiscussionswithotherexpertsonkeytopics:BeyondFossilFuels(TaraConnollyandJulietPhillips),Exergie(TomasCaha)ansdQvantumIndustries(ThomasNowak)andSiemensEnergy(ChristianHuettl).

Thisworkwassupportedbythe

CleanEnergyTransitionsProgramme

,theIEA’sflagshipinitiativetotransformtheworld’senergysystemtoachieveasecureandsustainablefutureforall.

RenewablesforIndustryElectrificationoflow-temperatureheatandsteamTableofcontents

IEA.CCBY4.0.

PAGE|6

Tableofcontents

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamforCDO1

Abstract 3

Acknowledgements,contributorsandcredits 4

Tableofcontents 6

ExecutiveSummary 8

Chapter1.Introduction 12

Industrialenergyuse 12

Industrialenergyprices 18

Industrialelectricityuse 19

Casefortheelectrificationofindustrialheat 21

Chapter2.Electrificationofheat 24

Overview 24

Heatpumps 27

Electricboilers 29

High-temperaturesystems 30

Thermalenergystoragesystems 31

Chapter3.Regionalinsights:EuropeanUnion 34

Stateofplay 34

Technicalelectrificationpotential 36

Spatialanalysis 40

Costanalysisforfocuscountries 43

Marketandpolicy 50

Chapter4.Regionalinsights:Chinaandselectedprovinces 58

Stateofplay 58

Technicalelectrificationpotential 60

Costanalysis 63

Marketandpolicy 67

Chapter5.Spotlight:ASEANregion 73

Stateofplay 73

Tableofcontents

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam

IEA.CCBY4.0.

PAGE|7

Technicalelectrificationpotential 75

Costanalysis 75

Marketandpolicy 78

Chapter6.Conclusionsandprioritiesforaction 83

Annex 92

Abbreviations 92

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamExecutivesummary

IEA.CCBY4.0.

PAGE|8

Executivesummary

Electrificationofheatcanimproveefficiency,helpdiversifyindustrialenergy,andenhanceenergysecurity

Abroadrangeofindustriesthatdependprimarilyonlow-temperatureheatandsteamprocessesrepresentroughly70%ofglobalindustrialenergyconsumption.Theyspandiversemanufacturingactivities–fromfoodandbeveragestotextiles,chemicals,transportequipment,woodproductsandpaper.In2023,thesesectorsemittednearly3Gtofdirectenergy-relatedCO:,accountingforhalfofalldirectindustrialemissions,althoughemissionshavedeclinedbyaround8%since2013.

Industrialenergyuseislargelyintheformofheatandisincreasinglybeingsuppliedfromelectricity.Overthepastdecade,globaluseofelectricityforindustrialheathasaccelerated,withthePeople’sRepublicofChina(hereafter,“China”),IndiaandtheAssociationofSoutheastAsianNations(ASEAN)recordingthelargestincreases.Despitedifferingindustrialstructures,allmajoreconomieshaveconvergedtowardsimilarelectricitysharesforindustrialheatofaround4–5%.Increaseduptakeisbeingdrivenbyimprovingcostcompetitiveness,expandingtechnologyavailabilityandstrongerpolicysignals,alongsidethebenefitsofreducingexposuretovolatilefossilfuelprices.

Renewablesarerapidlytransformingpowersystemsaroundtheworld,leadingtoahighershareofrenewablesintheindustrialmixviaheatelectrification.Thislinkagebetweenindustrialelectricitydemandandgrowingrenewablegenerationisbecominganimportantdriverofdecarbonisationacrossindustrialsectors.Itcontributestogreatersystemflexibility,strengthensenergysecuritybyreducingdependenceonfossilfuelimports,andfosterseconomicgrowth,industrialisationandemployment.

Low-temperatureindustrialheatandsteamarereadyforelectrification,butmarket

conditionsarenotyetinplace

Improvingenergyefficiencyisthefoundationalstepinpreparingfortheelectrificationoflow-temperatureheatandsteam.Energyefficiencymeasuresloweroverallheatdemand,reducelossesandtherebyenablesmaller,morecost-effectiveelectrificationsolutions.Inmanyindustrialfacilities,basicoptimisationsuchasrecoveringandeffectivelyusingwaste

IEA.CCBY

PAGE|9

heat,improvinginsulation,enhancingprocesscontrolandplant-levelthermaloptimisationcandeliverimmediatereductionsinfuelconsumptionatcomparativelylowcost.Thesemeasuresnotonlycutemissionsbutalsoreducethescaleofinvestmentrequiredforelectricheatingtechnologies.Prioritisingefficiencythereforemaximisestheimpactofsubsequentelectrificationeffortsandstrengthensthebusinesscaseforswitchingfromfossilfuels.

Industrialheatpumpsandelectricboilersarecommerciallyavailabletechnologiesforheatelectrificationbutfaceseveralstructuralbarriers.Large-scaleindustrialheatpumpsarewellestablishedtodeliverheatupto150°C,whileelectricboilerscangeneratesteamupto350°Candpressureofaround70bar.However,technologydeploymenthasremainedlimitedduetounfavourableelectricity-to-gaspriceratios,longgridconnectionleadtimesandtheabsenceofclearpolicyframeworks.Supportivepoliciesareonlynowgainingmomentum,butstrongersignalsarestillneeded.

Thermalstorageistheenablingtechnologythatcanconnectlow-costvariablerenewableelectricitysupplywithcontinuousindustrialheatdemand.Thermalstoragesystemscanbebuiltfromlow-cost,simplematerialssuchassand,cementandbricksandcanstoreheatupto1000°C.AtaroundUSD15-20perkWh,theyaresignificantlycheaperthanchemicalbatteriesanddon’trelyonglobalsupplychainsforcriticalminerals.Whilstthemarketforthermalenergystorageforindustrialapplicationsisstilldeveloping,projectsareemergingacrossmultipleregions.

Asetofdriversunderpinsmomentumacrossworldregions.

ElectrifyingindustrialheatwithrenewablescanenhanceenergysecurityintheEuropeanUnion(EU).Electrificationofindustrialprocessesthroughheatpumpsande-boilershasthetechnicalpotentialtoreducetheEU’sindustrialfossilfuelusebyalmost3000PJ.Directuseofnaturalgasforindustrialheatcouldbereducedby35bcm/yr,diversifyingenergyuseandimprovingthecontinent’senergysecurity.Substitutingnaturalgasandotherfossilfuelswithelectricityatthisscalewouldhoweverimplyaround600TWh/yrofadditionalelectricitydemand,comparabletothecombinedannualelectricityconsumptionofGermanyandtheNetherlands.

4.0.

IndustrialheatpumpsareeconomicallyattractivecomparedtoexistinggasboilersinseveralEUmemberstates.Therangeis,however,wideat41-74EUR/MWh,reflectingdifferencesinelectricityprices,andinapproachestoenergytaxationandnetworkcostallocationamongtheexaminedcountries.Electricboilersremainmoreexpensiveduetotheirlowerefficiency,althoughtheyareincreasinglyfindingmarketsinNorthernEuropethankstotheregion’slowelectricity-to-gaspriceratiosandtaxationthatisfavourabletowardselectrification.Addingthermalstoragewouldenhancethecostcompetitivenessofe-boilersbyreducingexposuretopeakpowerprices,whileimprovingoperationalflexibility

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteamExecutivesummary

IEA.CCBY

PAGE|10

andoverallenergyefficiency.PolicymomentumforindustrialheatelectrificationintheEUisbuildingintheformofrenewableheatingtargetsandfundinginstrumentsbutremainsinearlystages.

Chinaisacceleratingtheelectrificationofindustrialheatusethrougharangeofpolicies.Electrificationoflow-temperatureheatandsteamhastechnicalpotentialtoreduceChina’sindustrialfossilfuelusebyalmost9000PJ.Directnaturalgasusecouldbereducedby48bcm,reducingthecountry’sstrongimportdependence.Inparallel,realisingthetechnicalpotentialwouldincreaseelectricitydemandby1700TWh,whichiscomparabletotheforecastgrowthinChina’ssolarPVelectricitygenerationbetweentodayand2030.

DirectuseofsolarPVandwind,coupledwiththermalstorage,createsnewopportunitiesforheatelectrificationinChina.Connectingindustrialconsumersdirectlytocaptiverenewablepowergenerators(i.e.,solarPV,windonshoreorhybrid)couldalmosthalveheatelectrificationcostsforsteamfromUSD70-100/MWh(grid-connected)toaroundUSD50/MWhintheexaminedprovinces.Grid-connectedindustrialheatpumpsareattractivetodaycomparedtonaturalgasboilers,butstrugglewhilecheapdomesticcoalisavailableasaheatsource.

Chinaisacceleratingindustrialheatelectrificationthroughitscarbonneutralitytargetsandthroughcoordinatingnationalandprovincialpolicies.The14thFive-YearPlan,sectoralenergyefficiencyplans,heatpumpandelectricboileractionplans,financialsupportprogrammes,andgridreformsprovidestrongsupportfordeployment.However,manytargetedpoliciesstillfocusonenergy-intensiveindustries,leavinganopportunitytoexpandtheirscopetoallindustrialsectors.

IndustrialparksplayacentralroleintheASEANindustrylandscapeandcouldbecomedriversofheatelectrificationintheregion.Regionalvisionsandplanssupportrenewables,energyefficiency,andgreenindustrialhubs,yetstillfocusonenergy-intensivesectors.Capitalcosts,gridconstraints,andlimitedaccesstofinancehinderdeployment,particularlyinmanufacturinghubssuchasIndonesia,Malaysia,ThailandandVietNam.Expandingpolicyandfinancialsupporttoallindustrialsectors,alongsidetargeteddemonstrationprojectsandelectricitymarketreform,couldacceleratedeploymentofheatpumps,electricboilersandthermalstorage.

Policypriorityareastoacceleratedeployment

Whileseveraldriversexist,globalpolicymomentumisincreasingbutremainsinearlystages.Tohelpacceleratetheelectrificationofindustriallow-temperatureheatandsteam,theIEArecommendsthefollowingsixpriorityactions:

4.0.

1.Elevateheatelectrificationintothepolicyagendaandintegrateitintoindustrialroadmapsandtargetswithinbroaderenergygoals,whilekeepinga

RenewablesforIndustryElectrificationoflow-temperatureheatandsteamExecutivesummary

IEA.CCBY4.0.

PAGE|11

technology-openapproachaimingatfosteringawideportfolioofpossiblepathways.

2.Anticipateheatelectrificationinlong-termgridplanningandprioritiseconnectionrequestswithdemandsideflexibilitytopreventcapacityshortagesandreduceprojectdelays.

3.Reformelectricitytaxesandleviestoleveltheplayingfieldwithfossilfuelsandrewardflexibleindustrialdemand,possiblythroughlowernetworktariffs.

4.Providetargetedearlysupportforcapitalandoperationalcostsandenableinnovativebusinessmodelstoacceleratetheroll-outofheatelectrificationtechnologies.

5.Enhanceskillsandworkforcedevelopmentbyexpandingeducationandtrainingprogrammesandcertificationschemestomeetthegrowingdemandforindustrialelectrificationexpertise.

6.Promoteinternationalcollaborationontechnicalstandardframeworkstofacilitateequipmentinteroperability,broaderadoptionofstandardsandachieveeconomiesofscale

RenewablesforIndustry

Chapter1.Introduction

Electrificationoflow-temperatureheatandsteam

IEA.CCBY4.0.

PAGE|12

Chapter1.Introduction

Industrialenergyuse

Theindustrialsectorplaysavitalroleinshapingtheglobaleconomyandoureverydaylives.In2024,itrepresented

one-quarterofglobalgrossdomestic

product(GDP)

andisakeydriverofeconomicgrowthanddevelopment.Inthesameyear,italsoemployed

one-quarteroftheworldsworkforce

,supportingmillionsofjobsacrossdiverseskillsetsandprofessions.Industryproducesmanyessentialtoolsandproductsthatpeoplerelyonintheirdailylives,fromthepackagingthatprotectsandpreservesfoodandbeveragestothetextilesusedinclothingandfurniture,andthecementthatformsthefoundationofhomes,officesandpublicinfrastructure.

Theindustrialsectorisalsoasignificantuserofenergy.Itisresponsiblefor30%ofglobalconsumption,asharethathasremainedlargelystableoverthepastdecade,despiteanincreaseintotalindustrialenergyusefrom116exajoules(EJ)in2012to129EJin2023.

Buildings

28%

Industry

30%

429EJ

Other14%

Transport29%

Figure1.1Globalfinalenergyconsumptionandshareofindustryenergyconsumption,2023

Other

manufacturing

industries

71%

Iron,steelandnon-

metallicminerals

29%

IEA.CCBY4.0.

Notes:EJ=exajoule.Buildingsincluderesidential,commercialandpublicservicesectors.Otherincludesagriculture,forestry,fishing,finalconsumptionnotelsewherespecifiedandnon-energyusesoutsideindustry.Othermanufacturingindustriesincludeminingandquarrying,construction,manufacturing,chemicalsandpetrochemicals,non-ferrousmetals,transportequipment,machinery,food,beveragesandtobacco,pulp,paperandprinting,woodandwoodproducts,textileandleather,andnon-energyuseinchemicals.Non-metallicmineralsincludecement,glass,ceramicsandclay.Ironandsteelenergyconsumptionexcludesenergyuseinblastfurnacesandcokeovens.

RenewablesforIndustry

Chapter1.Introduction

Electrificationoflow-temperatureheatandsteam

IEA.CCBY4.0.

PAGE|13

Ironandsteelmaking,alongwiththeproductionofnon-metallicmineralssuchascement,glassorclay,areamongthoseindustrialsubsectorsthathaveanoutsizedimpactonindustrialenergyuseandemissions.Togethertheyaccountfornearly30%oftotalindustrialenergydemand(Figure1.1).Theremaining70%isgenerallycharacterisedbylowerenergyandcarbonemissionsintensities.Thethermalenergydemandinthissegmentispredominantlyforlow-temperatureheatandsteam.

Box1.1Electrificationpathwaysandusesofheatcoveredinthisreport

Thisreportfocusesonelectrificationpathwaysthatcandisplacefossilfueluseintheproductionoflow-temperatureheatandsteam.Theanalysisconcentratesespeciallyontwotechnologyfamiliesindustrialheatpumpsandelectricboilersthatarebothmatureandmarketreadyforelectrifyingheatdemandinthenearterm.

Thereportalsoexploreselectro-thermalenergystorage(ETES)technologiesthatcanshiftgridelectricityconsumptionfrompeakpriceperiodstolowerdemandperiodswithlowerprices,andthatcanalternativelyprovideaflexible,dispatchableheatsupplyfromvariablerenewableenergysourcessuchaswindandsolarphotovoltaic(PV)systems.

Thereportsscopedoesnotincludehigh-temperatureprocesses,suchascalcination,reformingandcracking.Althoughelectrificationoptionsfortheseprocessesareadvancing,theirdeploymentconditions,equipmentrequirementsandcostprofilesdiffersubstantiallyfromlow-temperatureapplicationsandarethereforenotaddressedinthisreport.

Thereportalsoexcludesearlystageoremergingtechnologiesthathaveseenpromisingdevelopmentsinrecentyearsbutarenotyetatthelevelofmarketmaturitysuitableforbroadindustryuptake.Thefocusisinsteadontechnologieswithestablishedsupplychains,demonstratedindustrialoperationandclearpathwaysforshort-termscale-up.

Thereportgroupsindustriesinaccordancewithprocessheattemperaturerequirementsratherthanintheconventionalhard-to-abateorlightindustrycategories.Iron,steelandnon-metallicmineralsarecategorisedashigh-temperatureheatindustriesthatrequireveryhighheatforprocessessuchasmelting,calciningorsintering.Othermanufacturingindustries(textile,food,beverages,papermaking,etc.)typicallyrelyonlow-temperatureheatandsteam.Thistemperature-basedgroupingunderpinstheassessmentoftechnologyoptionsandpolicyconsiderationsthroughoutthereport.FurthermethodologicaldetailsareprovidedinChapter2.

Chapter1.Introduction

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam

IEA.CCBY4.0.

PAGE|14

Severalabatementoptionsareavailableforlow-temperatureheatandsteamuse,forexample,electricalheating,solarthermalenergy,geothermalenergyandbioenergy(Box1.2).However,fossilfuelsremaintheprimaryindustrialenergysourceworldwidetoday,althoughenergymixesvaryfromoneregiontoanother.Forexamples,inChinaandthe11memberstatesformingtheAssociationofSoutheastAsianNations(

ASEAN

),industrialenergyuseisdominatedbycoal.Theuseofcoalislargelydrivenbyabundantdomesticresourcesthatcanprovideheattoenergy-intensiveindustriesatlowcostandwithsupplysecurityadvantagescomparedwithotherenergysources(Figure1.2).

IndustryintheEuropeanUnion,ontheotherhand,isrelativelygasdependent.Ataround30%,theshareofnaturalgasinoverallindustrialenergyconsumptionintheEuropeanUnionisclosertolevelsseeninmajorgasproducingcountries–theUnitedStatesat40%ortheRussianFederation(hereafter“Russia”)at20%.Inlargegas-importingeconomiessuchasJapanorChina,theshareislessthan15%.Thiscontrastreflectsdifferencesinsupplyconditions:liquifiednaturalgas(LNG)importswouldbemorecostlyforbothJapanandChinawhereasEurope,untilrecently,benefitedfromrelativelycheappipelinegasfromRussia.

Figure1.2Energyuseintheiron,steelandnon-metallicmineralindustries,andin

RestofEuropeanUnited

worldJapanASEANUnionStatesChina

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

Iron,steelandnon-metallicmineralsOthermanufacturingindustries

othermanufacturingindustries,inmajoreconomies,2023

0510152025303540EJ

CoalandpeatOilandoilproductsNaturalgasBiofuelsandwasteElectricityDistrictheating

IEA.CCBY4.0.

Notes:EJ=exajoule.Non-metallicmineralsincludecement,glass,ceramicsandclay.Ironandsteelenergyconsumptionexcludesenergyuseinblastfurnacesandcokeovens.Otherindustriesincludeminingandquarrying,construction,manufacturing,chemicalsandpetrochemicals,non-ferrousmetals,transportequipment,machinery,food,beveragesandtobacco,pulp,paperandprinting,woodandwoodproducts,textileandleatherandnon-energyuseinchemicals.

Chapter1.Introduction

RenewablesforIndustry–Electrificationoflow-temperatureheatandsteam

In2023,industryaccountedfor18%ofglobaldirectenergy-relatedCO2emissions,orjustover6gigatonnes

1

(Gt)ofCO2,representinga2%declinesince2013(Figure1.3).Whenincludingindirectenergy-relatedCO2emissionsfromheatandelectricityuse,totalenergy-relatedCO2emissionsmorethandoubletoapproximately12.5Gt.Inaddition,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论