【《移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述》2800字】_第1页
【《移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述》2800字】_第2页
【《移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述》2800字】_第3页
【《移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述》2800字】_第4页
【《移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述》2800字】_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

移动支付在自动售检票系统(AFC)中的应用研究国内外文献综述1.1国内外AFC发展现状自动售检票系统,即AFC系统(AutomaticFareCollectionsystem),是现代轨道交通领域重要的组成部分,该系统实现售票、检票、收费、计费、清分、统计、管理等整个票务业务的信息化处理,改变了传统人工售检票模式,是轨道交通现代化的标志产物。1967年加拿大蒙特利尔市是国际上第一个轨道交通系统开始采用自动售检票系统(AFC),该系统使用的是磁卡质票。随后,世界主要城市的轨道交通开始采用AFC系统,各种先进技术不断涌现并得到应用。1974年,美国旧金山城市地铁票务系统(BART)率先在收费系统中使用电子钱包,1982年香港地铁票务系统(MTRC)在国际上率先采用可循环使用的磁卡票,1993年,香港地铁采用接触式IC卡取代磁卡票,1997年推出八达通交通卡,是首次应用非接触式IC卡的地铁公司。我国的自动售检票系统(AFC)的研究和开发较晚,但随着国家对地铁、铁路建设项目的推进,轨道交通系统对AFC的需求日益增加。1999年3月1日,上海地铁成为我国第一个使用AFC系统的轨道交通线路,但该系统系引进的美国的AFC系统。2005年10月26日广深城际铁路在铁路系统中首次采用AFC系统,全线采用具备射频识别(RFID)的IC卡车票,全部实行非接触式刷卡验票进出站。2008年8月1日京津城际铁路第一次使用国内研发的自动售检票系统,全线采用磁介质接触式车票。国内目前已开通运营的高铁城际线均按照京津城际铁路的标准建设AFC系统。张彦等ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[3]结合轨道交通的应用经验,阐述AFC技术在铁路客运系统的不同应用模式,分自动售票系统和自动检票系统,分别论述了系统体系结构、系统构成、系统功能和关键技术,并指出铁路AFC系统的发展方向。王国光ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[5]研究了自动售检票系统中的关键技术车票介质的选择、组态软件和设备监控的综合运用、嵌入式实时操作系统的应用、系统安全等,提出了适合铁路旅客运输特点AFC系统。闫磊等ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[7]分析城市轨道交通自动售检票系统(AFC)及其发展史,重点阐述其终端设备与经典架构。在“互联网+”时代,从车站终端设备、维修成本、设备配置改变和系统架构等对iAFC进行探讨研究。1.2国内外移动支付发展现状移动支付(MobilePayment),也称之为手机支付,是指交易双方为了某种货物或者服务,使用移动终端设备为载体,通过移动通信网络实现的商业交易。移动支付所使用的移动终端可以是手机、PDA、移动PC等。王波ADDINZOTERO_ITEMCSL_CITATION{"citationID":"54Qt3UMf","properties":{"formattedCitation":"\\super[7]\\nosupersub{}","plainCitation":"[7]","noteIndex":0},"citationItems":[{"id":570,"uris":["/users/3618251/items/KKKVWVBV"],"uri":["/users/3618251/items/KKKVWVBV"],"itemData":{"id":570,"type":"article-journal","title":"Urbantrafficflowforecastingthroughstatisticalandneuralnetworkbaggingensemblehybridmodeling","container-title":"Neurocomputing","page":"3-7","volume":"167","source":"ScienceDirect","abstract":"InthispaperweshowahybridmodelingapproachwhichcombinesArtificialNeuralNetworksandasimplestatisticalapproachinordertoprovideaonehourforecastofurbantrafficflowrates.Experimentationhasbeencarriedoutonthreedifferentclassesofrealstreetsandresultsshowthattheproposedapproachoutperformsthebestofthemethodsitputstogether.","DOI":"10.1016/j.neucom.2014.08.100","ISSN":"0925-2312","journalAbbreviation":"Neurocomputing","author":[{"family":"Moretti","given":"Fabio"},{"family":"Pizzuti","given":"Stefano"},{"family":"Panzieri","given":"Stefano"},{"family":"Annunziato","given":"Mauro"}],"issued":{"date-parts":[["2015",11,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[8]从移动支付现状与自动售检票系统(AFC)需求出发,对第三方移动支付的电子车票系统进行开发研究,设计了三种二维码车票的应用方式:兑票模式、及时付款模式、预付款模式,并制订了相应的业务规则。在此基础上,开发了基于以上方案的相应的原型系统,并通过在某市的AFC系统测试中心测试,达到了预期的功能和性能的要求。陆建华ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[11]提出了一种远程支付与NFC近端支付技术相结合的铁路客票移动支付购票乘车方案,并以成都至都江堰城际铁路为例,进行了移动支付在城际铁路客票系统中的可行性研究。郑纯ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[13]通过分析沈阳地铁拟采用的APP手机支付方案、基于掌纹识别的RF-SIM卡手机支付方案、基于掌纹识别的NFC手机支付方案、基于人脸识别的RF-SIM卡手机支付方案、基丁人脸识别的NFC手机支付方案的系统性的研究和对比,最终确定适用于沈阳地铁的手机支付方案。赵存宝ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[15]通过运用商业模式理论、商业模式创新理论及决策理论,分析A公司云支付系统整个的项目商业运行过程,从商机决策、技术创新到商业模式构建的整个脉络,对商业模式实现的整个过程进行系统的阐述。同时利用比较分析法,对地铁引入云支付系统之后,从运营、盈利、创新及核心竞争力几个方面,对比AFC系统与云支付系统的绩效进行比较和评定,评估云支付业务的商业价值绩效指标。杨义锋ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[16]提出了一种基于城市公共交通二维码的支付系统,在智能手机上,通过手机APP生成二维码的方式把虚拟羊城通卡安装在手机上,实现用手机来刷卡\快速通行。李茂圣ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[17]针对NFC的应用支付技术的发展以及原理,分析NFC移动支付在地铁自动售检票系统应用,提出NFC移动支付在地铁AFC推广前景。张南飞ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANNisbetter.","DOI":"10.1007/s12351-015-0198-5","ISSN":"1866-1505","journalAbbreviation":"OperResIntJ","language":"en","author":[{"family":"Glišović","given":"Nataša"},{"family":"Milenković","given":"Miloš"},{"family":"Bojović","given":"Nebojša"},{"family":"Švadlenka","given":"Libor"},{"family":"Avramović","given":"Zoran"}],"issued":{"date-parts":[["2016",7,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[18]通过对手机电子钱包支付方式的研究,分析中国移动的RF-SIM支付方式在广深线AFC系统的应用的可行性。龚迥ADDINZOTERO_ITEMCSL_CITATION{"citationID":"eDm9CUYQ","properties":{"formattedCitation":"\\super[6]\\nosupersub{}","plainCitation":"[6]","noteIndex":0},"citationItems":[{"id":563,"uris":["/users/3618251/items/38II2DXT"],"uri":["/users/3618251/items/38II2DXT"],"itemData":{"id":563,"type":"article-journal","title":"AhybridmodelforforecastingthevolumeofpassengerflowsonSerbianrailways","container-title":"OperationalResearch","page":"271-285","volume":"16","issue":"2","source":"SpringerLink","abstract":"Theaccuracyofpredictingthevolumeofrailwaypassengerflowsisverysignificantbecauseofthevitalroleinthebasicfunctionsoftransportationresourcesmanagement.Althoughdealingwiththisproblemisveryoftenbasedontheuseoftheneuralnetworks,theuncertaintywhichdominatesinthefunctioningoftransportationsystemsisofgreatsignificance.Theneuralnetworkshavebeenusedforthetime-seriespredictionwithgoodresults.Thisresearchcomparedtwomethodstheparametricandthenon-parametricapproach.Thisstudyaimsatpresentingahybridmodelbasedontheintegrationofthegeneticalgorithm(GA)andtheartificialneuralnetworks(ANN)forforecastingthemonthlyvolumeofpassengersontheSerbianrailways.Thisinnovativehybriddemonstrateshowthegeneticalgorithmscanbeusedtooptimizethenetworkarchitecture.Byapplyingtheideaofgeneticalgorithmsintheneuralnetworks,theintegrationisusedsothatonthebasisoftheinputdata,theselectedpopulationrepresentsthenumberofneuronsinthemiddle.Inordertoassessperformances,thedevelopedapproachiscomparedtothetraditionalSARIMAmodelandtheproposedmethodGAANN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论