到2030年欧洲联盟电池电动卡车的充电基础设施需求-2026-01-出海研究_第1页
到2030年欧洲联盟电池电动卡车的充电基础设施需求-2026-01-出海研究_第2页
到2030年欧洲联盟电池电动卡车的充电基础设施需求-2026-01-出海研究_第3页
到2030年欧洲联盟电池电动卡车的充电基础设施需求-2026-01-出海研究_第4页
到2030年欧洲联盟电池电动卡车的充电基础设施需求-2026-01-出海研究_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

THEINTERNATIONALOUNCIL

NCEANTRANSPRTATION

icct

OCTOBER2025

Charginginfrastructure

needsforbatteryelectrictrucksintheEuropean

Unionby2030

HUSSEINBASMAANDJAKOBSCHMIDT

EXECUTIVESUMMARY

Salesofbatteryelectrictrucks(BETs)intheEuropeanUnion(EU)havesteadily

increasedoverthepastfewyears.Uptakehasincreasedacrossalltrucksegmentsandtruckingapplications,especiallyamonglight-andmedium-dutytrucksbelow

12tonnes.Thistrendisexpectedtoaccelerateoverthenext5yearsastruck

manufacturersneedtorampupBETsalestocomplywiththeEUcarbondioxide(CO2)reductiontargetsforheavy-dutyvehicles(HDVs).ThisgrowingBETfleetwillrequireanextensivenetworkoftruck-dedicatedcharginginfrastructuretocoverthetrucks

energyneeds.In2023,theEUadoptedtheAlternativeFuelsInfrastructureRegulation(AFIR),whichaimstoensureminimuminfrastructuresupportforalternativefuel

vehicles,includingBETs,byestablishingmandatorytargetsforpublicelectricvehiclechargerdeploymentacrosstheEU.

ThispaperquantifiesBETchargingneedsinthe27EUMemberStates(EU-27)in2030.WeuseamodelingapproachtoestimatethestockofBETsinEU-27;wethenestimatethechargingdemandsofthisfleet,consideringtheenergyconsumption,driving

patterns,andchargingbehaviorofmosttruckclassesandapplicationsintheEU.Thisanalysissupportsthefollowingconclusions:

»TheexpectedBETfleetintheEU-27by2030willrequirebetween22GWand28GWofinstalledchargingpowercapacity.Thisprojectedcapacityissplitalmostequallybetweenpublicandprivatechargers.Thistranslatesto150,000175,000

privatechargersand60,00080,000publicchargers.Thetop5MemberStatesintermsofBETchargingdemandsGermany,Poland,France,Spain,andItalyareexpectedtoaccountformorethan70%ofthetotalchargingneedsintheEU-27,giventheirhighsharesoftheoverallBETstockandtrafficactivityintheregion

(

FigureES

1).

»Overnightchargingisexpectedtobetheprimarychargingmode,whilebetween4,000and5,300megawatt(MW)chargersareprojectedtobeneededby2030.MWchargerscomprisealmost15%oftheprojectedinstalledchargingpowerneedsbutonly2%ofthetotalnumberofchargers.Lower-powerchargers,suchas350

kWchargers,cancovermorethanhalfofthepublicfastchargingneedsforlong-haultrucks.Inaddition,iflong-haultrucksareequippedwithlargerbatteriesin

thefuture(720kWh,relativeto600kWhtoday),theneedforMWchargerscan

bereducedby40%,significantlyreducingthesetrucksrelianceonpublicultrafastcharging(

FigureES

1).

iICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

iiICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

FigureES1

Totalchargingpowerneedsin2030inLowandHighBETuptakescenarios

14

12

10

Totalpower(GW)

8

6

4

2

0

OvernightFast(150–350kW)

Ultrafast(750kW)

HighscenarioLowscenario

172,800

63,900

147,100

12,000

5,300

49,500

10,300

Public

3,000

2,600

Private

4,100

Public

Private

Public

Note:Datalabelsindicatethetotalnumberofchargersineachscenario.

THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG

»TheAFIRisexpectedtocoverbetween50%and70%ofpubliccharging

needsintheEU-27by2030.Acrossthecoreroadnetwork,AFIRtargetsare

expectedtocoverbetween65%and85%oftotalchargingneeds,whileacrossthecomprehensiveroadnetwork,coveragedropsto35%–45%(FigureES2).Atthe

MemberStatelevel,AFIRtargetsonlycover30%to50%oftheexpectedpublicchargingneedsinhalfofMemberStates,includingtheNetherlandsandBelgium.ThisisbecauseAFIRdistance-basedtargetsdonotpreciselyreflectactualtrafficactivity,whichresultsinalargegapbetweentheAFIRtargetsandtheactual

chargingneedsforcountriesthathostahighshareoftruckingactivitybutalowshareoftheroadnetwork.TheoppositeistrueforcountrieslikeRomania,wheretheAFIRtargetistwiceashighastheexpectedchargingneeds.

FigureES2

TotalinstalledchargerpowercoveredundertheAFIRversusexpectedpublicchargingneedsunderLowandHighBETuptakescenarios

Core

AFIRyield

TotalneedsLowscenario

TotalneedsHighscenario

Comprehensive

5.631.877.49

6.674.1710.84

8.565.3513.90

0246810121416

Capacity(GW)

THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG

iiiICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

WhileAFIRtargetsmaynotcovertheentiretyofprojectedpublicchargingneedsin

2030,theregulation,iffullyimplemented,willensurebasiccoverageandhelpfacilitatethedeploymentofadditionalcharginginfrastructurethroughmarketforces.However,thescaleoftherequiredcharginginfrastructurewillposechallengesforlocalgrids,

especiallyathigh-powerchargingsitesacrosstheTrans-EuropeanTransportNetwork(TEN-T).Inadditiontogridcongestion,lengthypermittingproceduresandinvestmenthurdlesmaydelaythetimelydeploymentoftheinfrastructure.Manyofthose

challengescouldbeaddressedinthereviewoftheAFIRandothercomplementarypoliciesongridplanning,permitting,andinvestment.

Thisanalysissupportsthefollowingpolicyoptionsandconsiderations:

»PromoteinitiativesthatfocusonthedeploymentofHDV-specificcharging

infrastructureacrosskeytransportcorridorsintheEU.Suchinitiativesnotably

includetheCleanTransportCorridorInitiative.Thiswillacceleratecharging

deploymentinkeycorridorsoftheTEN-Tnetworkandenabletheapplicationof

bestpracticestofast-trackandstreamlinetheinfrastructurebuild-outacrossothercorridors.

»Accelerateandstreamlinethecharginginfrastructuredeploymentandgrid

permittingprocesses.CategorizingHDVchargingstationsandtheirconnectiontothegridasprojectsofoverridingpublicinterestcanhelpacceleratepermittingprocedures.Inaddition,streamliningtheprocessacrosstheEUcanreducethe

burdenonchargepointoperatorsandsupportmoreefficientplanning.

»Empowergridoperatorstomakeanticipatoryinvestments.Theexisting

demand-driven,reactiveapproachtogridplanningcansignificantlydelaygrid

upgrades.Proactivegridplanningisessentialtoensurethatcharginginfrastructureisdeployedinatimelymanner.Nationalenergyregulatorscansupportsuch

investmentsthroughproperregulatoryframeworks.

»Promotetransparencyingridhostingcapacitiesandstreamlinethetypeand

formatofreporteddata.Suchmapscanhelpchargepointoperatorsanddepot

ownerscarryoutself-assessmentsofgridconnectionfeasibilityinlocationsof

interest,enablingfasterinvestmentdecisions,shorteningthegridconnectiontime,andreducingtheburdenonlocalgridoperators.

ivICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

TABLEOFCONTENTS

Executivesummary i

Introduction 1

Policybackground 2

Methodology 3

Truckfleetsalesandstocks 4

Estimatingelectrictrucksalesshares 4

Electrictruckstocks 7

Truckfleetcharginginfrastructureneeds 8

Electrictruckdailyenergyneeds 9

Chargingpatterns 10

Chargerutilizationandlocation 12

Results 14

Projectedchargingneedsin2030 14

ComparingpublicchargingneedswithAFIRtargets 15

MemberState-levelanalysis 17

Sensitivityanalysis 19

Impactofpublicfastandultrafastchargerutilizationrates 19

Impactofpublicandprivateovernightchargingshares 20

Impactofbatterysizeonpublicfastandultrafastchargers 21

Discussion 23

AFIRtargetsandprojectedpublicchargingneeds 23

Overnight,fast,andultrafast(MW)charging 23

MemberStates’chargingneedsandtheAFIRtargets 23

Conclusionsandpolicyconsiderations 25

References 27

Appendix 29

vICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

LISTOFFIGURES

FigureES1

.

Totalchargingpowerneedsin2030inLowandHighBETuptake

scenarios ii

FigureES2

.

TotalinstalledchargerpowercoveredundertheAFIRversus

expectedpublicchargingneedsunderaLowandHighBETuptakescenarios ii

Figure1

.

Schematicofthemethodologyemployedtoquantifythecharging

infrastructureneeds 3

Figure2

.

2022andprojected2030emissionsforconventionaltrucks,by

VECTOgroup 6

Figure

3.

ModeledBETsalesandstocksbetween2025and2030under

theLowscenario 8

Figure

4.

ModeledBETsalesandstocksbetween2025and2030under

theHighscenario 8

Figure

5.

Probabilitydensityfunctionoftrucks’dailymileageforselected

VECTOgroups 10

Figure

6.

Distributionofdailyenergyneedsandchargingpatternfora

long-haul(VECTOgroup5-LH)truck 12

Figure

7.

Totalchargingcapacityneedsfordifferentcharginglocations

andtechnologiesby2030intheLowandHighscenarios 14

Figure

8.

ComparisonoftotalinstalledchargerpowerunderAFIRtargets

withprojectedchargingneedsintheLowandHighscenarios 16

Figure

9.

Comparisonofminimumchargingpowerperpoolunderthe

AFIRtargetswithprojectedchargingneedsintheLowandHighscenarios 17

Figure

10.

Totalprivateandpublicinstalledchargingpowerneedsinthe

EU-27by2030,bycountry 18

Figure1

1.

Ratioofprojectedpublicchargingpowerneedstoapproximate

AFIRtargetsperMemberStatein2030 18

Figure1

2.

Impactofutilizationratesonpublicfastandultrafastcharging

needsintheLowandHighmarketuptakescenarios 20

Figure1

3.

Impactofpublicvs.privateovernightchargingshareson

overnightchargingneeds 21

Figure1

4.

Impactofbatterysizeonpublicfastandultrafastchargingneeds 22

viICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

LISTOFTABLES

Table1

.

SummaryoftheAFIRtargetsforHDVsbetween2025and2030 2

Table2

.

VECTOgroupsconsideredandcategoriesusedinthisanalysis 4

Table3

.

SalessharesofBETundertheHighscenario 7

Table4

.

Energyconsumption,annualanddailymileage,andbatterysizeof

modelyear2030trucks 9

Table5

.

Nominalchargingratesfordifferentchargingtechnologies,

byVECTOgroup 11

Table6

.

Shareofpublicandprivateovernightchargingfordifferent

truckcategories 13

Table7

.

Totalnumberofchargersneededby2030intheLowscenario,

bylocationandtechnology 15

Table8

.

Totalnumberofchargersneededby2030intheHighscenario,

bylocationandtechnology 15

Table9

.

Alternativefastandultrafastchargingutilizationrateassumptions 19

Table10

.

Alternativepublicandprivateovernightchargingrateassumptions 20

Table11

.

Alternativelong-haultractor-trailerbatterysizeassumption 21

TableA1

.

Assumptionsonannualmileage,meandailymileage,and

standarddeviationofthedailymileageperVECTOgroup 29

TableA2

.

Lengthofthecomprehensive(total)andcoreroadnetwork

intheEU-27MemberStates 30

TableA3

.

Batteryelectrictrucks’stockperMemberStateby2030under

LowandHighmarketuptakescenarios 31

TableA4

.

VECTOgroups’mainattributes 32

TableA5

.

Shareoftrafficactivityintonne-kmacrossthecoreand

comprehensivenetworksinEUMemberStates 32

1ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

INTRODUCTION

DecarbonizingtheEuropeanUnion(EU)roadfreightsectorwillrequireasignificantshareofzero-emissiontrucks(ZETs)1coveringabroadspectrumoftrucking

applications,fromlast-miledeliverytolong-haulcross-bordershipping.In2024,over14,000ZETswereregisteredintheEU.Ofthese,3,400wereheavy-dutytruckswithagrossvehicleweight(GVW)above12tonnes,representing1.2%ofheavytrucksales.Light-andmedium-dutytrucksbelow12tonnesrecordeda10%ZETmarketsharein2024,asignificantincreasefromthe6%sharein2023(Mulholland&Ragon,2025).

ThisincreaseinZETsaleshaslargelybeendrivenbyEUheavy-dutyvehicle(HDV)carbondioxide(CO2)standards(Regulation(EU)2024/1610,2024).Afterthe

mostrecentreviewofthestandardsinMay2024,manufacturersmustreducetheir

fleet-wideCO2emissionsby45%by2030relativeto2019.Manufacturersmay

pursuetwomainpathwaystocomplywiththistarget:improvingtheefficiencyof

theirconventionaldieselandnaturalgasvehicles,orincreasingtheirsalessharesof

ZETs.Manufacturersareexpectedtopursueastrategycombiningbothoptions.ThestringencyofthetargetsiswellbeyondtheCO2reductionpotentialofdieselenginetechnology(Basma&Rodríguez,2023),implyingthatmanufacturerscanonlycomplybyrampinguptheirsalesofZETs.

Batteryelectrictrucks(BETs)areexpectedtodominatethesalesofZETsduetotheirtechnologicalmaturityandsuperioreconomicperformance(Basma&Rodríguez,

2023).TheexpectedBETfleetwillrequireanextensivepubliccharginginfrastructurenetworktocoveritsenergyneeds.Tothisend,theEUissuedtheAlternativeFuels

InfrastructureRegulation(AFIR;Regulation(EU)2023/1804,2023),whichaimsto

ensureminimumpublicinfrastructuresupportforalternativefuelvehiclesbysetting

targetsforpublicEVchargerdeploymentthroughouttheEU.2TheAFIRisexpectedtobereviewedbeforetheendof2026,providinganopportunitytoassesswhethersuchtargetsaresufficienttoaccommodatetheexpectedBETfleetby2030.

ThisstudyestimatestheamountandtypeofcharginginfrastructureneededtomeetBETdemandintheEUby2030.TheanalysismainlyreliesontheICCT’sRoadmap

model(ICCT,n.d.)andHDVCHARGEmodelstoquantifyvehiclestocks,energyneeds,andcharginginfrastructurerequirements,asexplainedinthemethodologysection.

TheresultsarethencomparedtotheAFIRminimumtargets.

1ZETs,asdefinedbyRegulation(EU)2024/1610,includebatteryelectric,hydrogenfuel-cell,andhydrogencombustiontrucksthatemitlessthan3gCO2/tonne-km.

2Regulation(EU)2023/1804definesalternativefuelsas“fuelsorpowersourceswhichserve,atleast

partly,asasubstituteforfossiloilsourcesintheenergyusedfortransportandwhichhavethepotentialtocontributetoitsdecarbonisationandenhancetheenvironmentalperformanceofthetransportsector.”

2ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

POLICYBACKGROUND

TheAFIRwasfirstproposedbytheEuropeanCommissionin2021aspartofthe“Fitfor55”packageofclimate-relatedlegislativemeasures(EuropeanCommission,2021b)andwasultimatelypassedin2023(Regulation(EU)2023/1804,2023).TheregulationsetsbindingtargetsforEUMemberStatestodeployalternativefuelinfrastructure,mainlychargingandhydrogenrefuelingstations,forseveraltransportsectors,includingroadtransport.ConcerningHDVs,theregulationincludesthreetypesoftargetsregarding

infrastructuredeployment:

»Distance-basedtargetsalongtheTrans-EuropeanTransportNetwork(TEN-T);»Targetsaturbannodes,suchasmajorports,rails,androadterminals;and

»Targetsatsafeandsecureparkingareas,referringtoparkingareasaccessibletodriversengagedinthecarriageofgoodsorpassengers.

Table

1summarizestheAFIRtargetsforHDVsbetween2025and2030.Bytheendof2025,EUMemberStatesarerequiredtodeployatleastonepublicrechargingpool

withaminimumtotalaggregatedpowerof1,400kWevery120kmineachdirectionoftravelover15%ofthecoreandcomprehensiveTEN-T.Forfutureyears,theminimum

totalpowerincreasesandthedistanceseparatingtworechargingpoolsdecreases,

implyingadenserpubliccharginginfrastructurenetwork.Regardingurbannodes,theAFIRmandatesaminimumtotalaggregatedpowerof900kWin2025,whichincreasesupto1,800kWby2030.Asforthesafeandsecureparkingareas,thetargetisto

haveatleasttwo100kWchargingstationsby2027andfourby2030.MoredetailsontheserequirementscanbefoundinBernard(2023).Regulation(EU)2023/1804(2023)statesthatthesetargets,amongotherAFIRcomponents,willbereviewedbyDecember2026andevery5yearsthereafter.

Table1

SummaryoftheAFIRtargetsforHDVsbetween2025and2030

Targettype

Date

Requirement

Distance-based

2025

Onerechargingpoolwithaminimumtotalaggregatedpowerof1,400kWevery120kmineachdirectionoftravelover15%ofthecoreandcomprehensiveTEN-T,withatleastone350kWchargingpoint.

2027

Onerechargingpoolwithaminimumtotalaggregatedpowerof2,800kWevery120kmineachdirectionoftravelover50%ofthecoreandcomprehensiveTEN-T,withatleastone350kWchargingpoint.

2030

Onerechargingpoolwithaminimumtotalaggregatedpowerof3,600kWevery60kmineachdirectionoftraveloverthecoreTEN-T,withatleastone350kWchargingpoint.

Onerechargingpoolwithaminimumtotalaggregatedpowerof1,500kWevery100kmineachdirectionoftraveloverthecomprehensiveTEN-T,withatleastone350kWchargingpoint.

Urbannodes

2025

Onerechargingpoolwithaminimumtotalaggregatedpowerof900kW,withatleastone150kWchargingpoint.

2030

Onerechargingpoolwithaminimumtotalaggregatedpowerof1,800kW,withatleastone150kWchargingpoint.

Safeand

secureparkingareas

2027

Atleasttwo100kWchargingstations.

2030

Atleastfour100kWchargingstations.

Note:AccordingtotheAFIR,arechargingpointis“afixedormobile,on-gridoroff-gridinterfacethatallows

forthetransferofelectricitytoanelectricvehicle,which,whileitmayhaveoneorseveralconnectorsto

accommodatedifferentconnectortypes,iscapableofrechargingonlyoneelectricvehicleatatime,andexcludesdeviceswithapoweroutputlessthanorequalto3.7kWtheprimarypurposeofwhichisnotrechargingelectricvehicles.”Arechargingpoolrefersto“oneormorerechargingstationsataspecificlocation,”whilearechargingstationreferstoa“physicalinstallationataspecificlocation,consistingofoneormorerechargingpoints.”

3ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

METHODOLOGY

Thissectionpresentsthemethodologyusedtoquantifythecharginginfrastructure

needsforheavy-dutyelectrictrucks.Thismethodologycomprisestwomainparts:

1.Truckfleetsalesandstocks.Totalannualsalesandstocksofelectrictrucksare

calculatedusingtheICCT’sRoadmapmodel(ICCT,n.d.),consideringtwoscenariosforthepaceoftruckelectrification.

2.Truckcharginginfrastructureneeds.CharginginfrastructureneedsareestimatedusingtheICCT’sHDVCHARGEmodel(Schmidtetal.,2024),quantifyingtheenergydemandsassociatedwiththeprojectedtruckfleetconsideringtruckcharging

patternsandinfrastructureutilization.

Thistwo-partmethodologyisillustratedinFigure1andexplainedingreaterdetailbelow.

Figure1

Schematicofthemethodologyemployedtoquantifythecharginginfrastructureneeds

Truckfleetcharginginfrastructureneeds(ICCTHDVCHARGEmodel)

Truckfleetsalesandstocks(ICCTRoadmapmodel)

Energy

consumption

CalculateZEVdailyenergyneeds

Dailymileagedistribution

Market

development

scenario

DieseltrucksCO2emissions

Fleet

composition

CalculateZEVsharespertruckclass

Batterysize

Location

Setchargingpatterns

pertruckclass

(depot,public)

Fleet

growthrate

Fleetsurvivial

curves

Type

CalculateZEV

fleetstocks

(overnight,fast)

Duration

Chargerpower

rate

Calculatetotalpower

demandandcharger

Charger

utilization

numbers

THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG

Themagnitude,type,andlocationofcharginginfrastructureforBETsintheEUwill

mainlybedictatedbythetotalnumberofBETs,consideringdifferencesinapplicationthatimpactchargingpatterns.Asshownin

Table

2,thisanalysisconsidersthemain

regulatedVehicleEnergyConsumptioncalculationTOol(VECTO)groupsandexcludes

4ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

busesandcoaches.3Forsimplicity,thedifferenttruckgroupsconsideredinthis

analysisarefurtherclusteredintofourcategories:long-haulheavytrucks,regional

heavytrucks,lightandmediumtrucks,andvocationaltrucks.Together,theVECTO

groupscoveredinthisstudyrepresented86%ofalltrucksalesintheEUin2024.TableA4intheappendixsummarizesthemainattributesofthesegroups.

Table2

VECTOgroupsconsideredandcategoriesusedinthisanalysis

Category

VECTOgroups

Long-haulheavytrucks

4-LH,5-LH,9-LH,and10-LH

Regionalheavytrucks

4-UD,4-RD,5-RD,9-RD,and10-RD

Lightandmediumtrucks

1,2,and3

Vocationaltrucks

11,12,and16

TRUCKFLEETSALESANDSTOCKS

First,electrictrucksharesinagivenyearwereestimatedbasedontwoscenariosofBETuptakeby2030:

1.Lowscenario:ThisscenarioconsiderstheminimumsharesofZETsneededforEuropeantruckmanufacturerstomeetthe45%CO2reductiontargetby2030.

2.Highscenario:ThisscenariomodelsfasterBETuptake,basedontheexpected

sharesofBETsin2030accordingtoconfidentialconsultationsbetweentruck

manufacturersandtheGermangovernmentundertakenin2024(Nationale

OrganisationWasserstoff-undBrennstoffzellentechnologie[NOWGmbH],2024).

Salesandstockswerethencalculatedbasedontheexpectedgrowthinfleetactivity

overtimeandthevehiclesurvivalrate,amongothervariables,usingtheICCTRoadmapmodel(ICCT,n.d.).

Estimatingelectrictrucksalesshares

Lowscenario

UndertheLowscenario,sharesofZETsrequiredformanufacturercomplianceby2030willheavilydependontheCO2emissionsofdieseltrucks—which,inturn,hingeontheextenttowhichdieseltrucktechnologyhasimprovedrelativetothe2019reporting

period.4SharesofZETsrequiredforcompliancebythe2030reportingperiodwillalsodependonanycreditsgeneratedbytruckmanufacturersbetween2026and2029.

Manufacturerscangeneratecreditsiftheymanagetoreducetheiremissionsbelowtheemissiontrajectoryline,astraightlinedrawnbetweenthe2025and2030CO2reductiontargets.Thisanalysisdoesnotconsidercreditstopresentanupper-endestimateofBETsalessharesneededunderthisscenario.

BasedonEuropeanEnvironmentAgency(EEA)data,dieseltrucks’CO2emissions,

expressedingCO2/tonne-km,slowlydeclinedbetweenthe2019and2022reportingperiods,byanannualrateofroughly1%(EEA,n.d.).Thisreductionwasmainlyduetoimprovementsintruckaerodynamics,energyefficiency,andtirerollingresistance,ashighlightedinapreviousICCTpublication(Musaetal.,2024).

3VECTOisasimulationtoolthatisusedtocertifytheCO2emissionsfromHDVs.

4Forthepurposeofemissionsreporting,EUreportingperiodsrunfromJuly1toJune30ofthefollowingyear;forinstance,the2019reportingyearrunsfromJuly1,2019,toJune30,2020.

5ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030

Dieseltechnologyisexpectedtoimprovefurtherbetween2022and2030.Potentialadvancementsincludereductionsinaerodynamicdragthroughbettercabdesigns,theachievementoflowerrollingresistancethroughtheuseofmoreefficienttires,

andengineefficiencyimprovements.AllmajortruckmanufacturersoperatingintheEUannouncednewtruckmodelsbetween2023and2025,withvehicle-levelfuel

savingsrangingbetween5%and15%comparedwith2022modelsdependingon

theirtechnologypackages.AsummaryofthosetechnologypackagesisincludedinapreviousICCTpublication(Mulholland&Ragon,2025).

ToprojectdieseltruckCO2emissionsandtechnologydevelopmentin2030,we

developedregressionmodelsbasedon2022emissionsdatafromEEA(n.d.).TheCO2emissionsoftrucksbelongingtothesameVECTOgroupcanvarywidelydependingonthetechnologypackagesdeployedineachmodel.TheregressionmodelsestablishedrelationsbetweentruckCO2emissionsandprimarytechnologymetrics,namely

aerodynamicairdrag,rollingresistancecoefficient,andengineaverageefficiency

overtheWorldHarmonizedTruckCycle(WHTC),allofwhicharereportedintheEEAdatabase.WedevelopedaseparateregressionmodelforeachVECTOgroup.

ThemodelsallowedustoquantifytheCO2emissionsofeachVECTOgroupifacertainimprovementwererealizedinthesetechnologymetrics.Forthisanalysis,weassumedthat,by2030,alltechnologymetricswouldconvergetothetop20thpercentilefor

everymanufacturer,giventhestateofthetechnologyinthe2022reportingperiod.Thisrepresentsamoderateassumption,implyingthattruckmanufacturerswillsell

moreoftheirbetter-performingtrucksintermsofCO2emissions,butnotnecessarilytheirbest-in-classmodels.MoredetailsontheformulationoftheregressionmodelscanbefoundinanotherICCTpublication(Mulhollandetal.,2025).

Figure

2showsthe2022CO2emissionsandourmodeled2030emissionsforevery

VECTOgroup.Ingeneral,theprojectedCO2reductionin2030relativeto2022rangesfrom2%to12%.Themostimportantgroupsbyshareofsalesandemissions,groups

5-LHand9-LH,areexpectedtorecordaCO2emissionsreductionabove10%,basedonthedieseltechnologythatwasavailableduringthe2022reportingperiod.

6ICCTREPORT|CHARGINGINFRASTRUCTURE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论