版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
THEINTERNATIONALOUNCIL
NCEANTRANSPRTATION
icct
OCTOBER2025
Charginginfrastructure
needsforbatteryelectrictrucksintheEuropean
Unionby2030
HUSSEINBASMAANDJAKOBSCHMIDT
EXECUTIVESUMMARY
Salesofbatteryelectrictrucks(BETs)intheEuropeanUnion(EU)havesteadily
increasedoverthepastfewyears.Uptakehasincreasedacrossalltrucksegmentsandtruckingapplications,especiallyamonglight-andmedium-dutytrucksbelow
12tonnes.Thistrendisexpectedtoaccelerateoverthenext5yearsastruck
manufacturersneedtorampupBETsalestocomplywiththeEUcarbondioxide(CO2)reductiontargetsforheavy-dutyvehicles(HDVs).ThisgrowingBETfleetwillrequireanextensivenetworkoftruck-dedicatedcharginginfrastructuretocoverthetrucks
energyneeds.In2023,theEUadoptedtheAlternativeFuelsInfrastructureRegulation(AFIR),whichaimstoensureminimuminfrastructuresupportforalternativefuel
vehicles,includingBETs,byestablishingmandatorytargetsforpublicelectricvehiclechargerdeploymentacrosstheEU.
ThispaperquantifiesBETchargingneedsinthe27EUMemberStates(EU-27)in2030.WeuseamodelingapproachtoestimatethestockofBETsinEU-27;wethenestimatethechargingdemandsofthisfleet,consideringtheenergyconsumption,driving
patterns,andchargingbehaviorofmosttruckclassesandapplicationsintheEU.Thisanalysissupportsthefollowingconclusions:
»TheexpectedBETfleetintheEU-27by2030willrequirebetween22GWand28GWofinstalledchargingpowercapacity.Thisprojectedcapacityissplitalmostequallybetweenpublicandprivatechargers.Thistranslatesto150,000175,000
privatechargersand60,00080,000publicchargers.Thetop5MemberStatesintermsofBETchargingdemandsGermany,Poland,France,Spain,andItalyareexpectedtoaccountformorethan70%ofthetotalchargingneedsintheEU-27,giventheirhighsharesoftheoverallBETstockandtrafficactivityintheregion
(
FigureES
1).
»Overnightchargingisexpectedtobetheprimarychargingmode,whilebetween4,000and5,300megawatt(MW)chargersareprojectedtobeneededby2030.MWchargerscomprisealmost15%oftheprojectedinstalledchargingpowerneedsbutonly2%ofthetotalnumberofchargers.Lower-powerchargers,suchas350
kWchargers,cancovermorethanhalfofthepublicfastchargingneedsforlong-haultrucks.Inaddition,iflong-haultrucksareequippedwithlargerbatteriesin
thefuture(720kWh,relativeto600kWhtoday),theneedforMWchargerscan
bereducedby40%,significantlyreducingthesetrucksrelianceonpublicultrafastcharging(
FigureES
1).
iICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
iiICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
FigureES1
Totalchargingpowerneedsin2030inLowandHighBETuptakescenarios
14
12
10
Totalpower(GW)
8
6
4
2
0
OvernightFast(150–350kW)
Ultrafast(750kW)
HighscenarioLowscenario
172,800
63,900
147,100
12,000
5,300
49,500
10,300
Public
3,000
2,600
Private
4,100
Public
Private
Public
Note:Datalabelsindicatethetotalnumberofchargersineachscenario.
THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG
»TheAFIRisexpectedtocoverbetween50%and70%ofpubliccharging
needsintheEU-27by2030.Acrossthecoreroadnetwork,AFIRtargetsare
expectedtocoverbetween65%and85%oftotalchargingneeds,whileacrossthecomprehensiveroadnetwork,coveragedropsto35%–45%(FigureES2).Atthe
MemberStatelevel,AFIRtargetsonlycover30%to50%oftheexpectedpublicchargingneedsinhalfofMemberStates,includingtheNetherlandsandBelgium.ThisisbecauseAFIRdistance-basedtargetsdonotpreciselyreflectactualtrafficactivity,whichresultsinalargegapbetweentheAFIRtargetsandtheactual
chargingneedsforcountriesthathostahighshareoftruckingactivitybutalowshareoftheroadnetwork.TheoppositeistrueforcountrieslikeRomania,wheretheAFIRtargetistwiceashighastheexpectedchargingneeds.
FigureES2
TotalinstalledchargerpowercoveredundertheAFIRversusexpectedpublicchargingneedsunderLowandHighBETuptakescenarios
Core
AFIRyield
TotalneedsLowscenario
TotalneedsHighscenario
Comprehensive
5.631.877.49
6.674.1710.84
8.565.3513.90
0246810121416
Capacity(GW)
THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG
iiiICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
WhileAFIRtargetsmaynotcovertheentiretyofprojectedpublicchargingneedsin
2030,theregulation,iffullyimplemented,willensurebasiccoverageandhelpfacilitatethedeploymentofadditionalcharginginfrastructurethroughmarketforces.However,thescaleoftherequiredcharginginfrastructurewillposechallengesforlocalgrids,
especiallyathigh-powerchargingsitesacrosstheTrans-EuropeanTransportNetwork(TEN-T).Inadditiontogridcongestion,lengthypermittingproceduresandinvestmenthurdlesmaydelaythetimelydeploymentoftheinfrastructure.Manyofthose
challengescouldbeaddressedinthereviewoftheAFIRandothercomplementarypoliciesongridplanning,permitting,andinvestment.
Thisanalysissupportsthefollowingpolicyoptionsandconsiderations:
»PromoteinitiativesthatfocusonthedeploymentofHDV-specificcharging
infrastructureacrosskeytransportcorridorsintheEU.Suchinitiativesnotably
includetheCleanTransportCorridorInitiative.Thiswillacceleratecharging
deploymentinkeycorridorsoftheTEN-Tnetworkandenabletheapplicationof
bestpracticestofast-trackandstreamlinetheinfrastructurebuild-outacrossothercorridors.
»Accelerateandstreamlinethecharginginfrastructuredeploymentandgrid
permittingprocesses.CategorizingHDVchargingstationsandtheirconnectiontothegridasprojectsofoverridingpublicinterestcanhelpacceleratepermittingprocedures.Inaddition,streamliningtheprocessacrosstheEUcanreducethe
burdenonchargepointoperatorsandsupportmoreefficientplanning.
»Empowergridoperatorstomakeanticipatoryinvestments.Theexisting
demand-driven,reactiveapproachtogridplanningcansignificantlydelaygrid
upgrades.Proactivegridplanningisessentialtoensurethatcharginginfrastructureisdeployedinatimelymanner.Nationalenergyregulatorscansupportsuch
investmentsthroughproperregulatoryframeworks.
»Promotetransparencyingridhostingcapacitiesandstreamlinethetypeand
formatofreporteddata.Suchmapscanhelpchargepointoperatorsanddepot
ownerscarryoutself-assessmentsofgridconnectionfeasibilityinlocationsof
interest,enablingfasterinvestmentdecisions,shorteningthegridconnectiontime,andreducingtheburdenonlocalgridoperators.
ivICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
TABLEOFCONTENTS
Executivesummary i
Introduction 1
Policybackground 2
Methodology 3
Truckfleetsalesandstocks 4
Estimatingelectrictrucksalesshares 4
Electrictruckstocks 7
Truckfleetcharginginfrastructureneeds 8
Electrictruckdailyenergyneeds 9
Chargingpatterns 10
Chargerutilizationandlocation 12
Results 14
Projectedchargingneedsin2030 14
ComparingpublicchargingneedswithAFIRtargets 15
MemberState-levelanalysis 17
Sensitivityanalysis 19
Impactofpublicfastandultrafastchargerutilizationrates 19
Impactofpublicandprivateovernightchargingshares 20
Impactofbatterysizeonpublicfastandultrafastchargers 21
Discussion 23
AFIRtargetsandprojectedpublicchargingneeds 23
Overnight,fast,andultrafast(MW)charging 23
MemberStates’chargingneedsandtheAFIRtargets 23
Conclusionsandpolicyconsiderations 25
References 27
Appendix 29
vICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
LISTOFFIGURES
FigureES1
.
Totalchargingpowerneedsin2030inLowandHighBETuptake
scenarios ii
FigureES2
.
TotalinstalledchargerpowercoveredundertheAFIRversus
expectedpublicchargingneedsunderaLowandHighBETuptakescenarios ii
Figure1
.
Schematicofthemethodologyemployedtoquantifythecharging
infrastructureneeds 3
Figure2
.
2022andprojected2030emissionsforconventionaltrucks,by
VECTOgroup 6
Figure
3.
ModeledBETsalesandstocksbetween2025and2030under
theLowscenario 8
Figure
4.
ModeledBETsalesandstocksbetween2025and2030under
theHighscenario 8
Figure
5.
Probabilitydensityfunctionoftrucks’dailymileageforselected
VECTOgroups 10
Figure
6.
Distributionofdailyenergyneedsandchargingpatternfora
long-haul(VECTOgroup5-LH)truck 12
Figure
7.
Totalchargingcapacityneedsfordifferentcharginglocations
andtechnologiesby2030intheLowandHighscenarios 14
Figure
8.
ComparisonoftotalinstalledchargerpowerunderAFIRtargets
withprojectedchargingneedsintheLowandHighscenarios 16
Figure
9.
Comparisonofminimumchargingpowerperpoolunderthe
AFIRtargetswithprojectedchargingneedsintheLowandHighscenarios 17
Figure
10.
Totalprivateandpublicinstalledchargingpowerneedsinthe
EU-27by2030,bycountry 18
Figure1
1.
Ratioofprojectedpublicchargingpowerneedstoapproximate
AFIRtargetsperMemberStatein2030 18
Figure1
2.
Impactofutilizationratesonpublicfastandultrafastcharging
needsintheLowandHighmarketuptakescenarios 20
Figure1
3.
Impactofpublicvs.privateovernightchargingshareson
overnightchargingneeds 21
Figure1
4.
Impactofbatterysizeonpublicfastandultrafastchargingneeds 22
viICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
LISTOFTABLES
Table1
.
SummaryoftheAFIRtargetsforHDVsbetween2025and2030 2
Table2
.
VECTOgroupsconsideredandcategoriesusedinthisanalysis 4
Table3
.
SalessharesofBETundertheHighscenario 7
Table4
.
Energyconsumption,annualanddailymileage,andbatterysizeof
modelyear2030trucks 9
Table5
.
Nominalchargingratesfordifferentchargingtechnologies,
byVECTOgroup 11
Table6
.
Shareofpublicandprivateovernightchargingfordifferent
truckcategories 13
Table7
.
Totalnumberofchargersneededby2030intheLowscenario,
bylocationandtechnology 15
Table8
.
Totalnumberofchargersneededby2030intheHighscenario,
bylocationandtechnology 15
Table9
.
Alternativefastandultrafastchargingutilizationrateassumptions 19
Table10
.
Alternativepublicandprivateovernightchargingrateassumptions 20
Table11
.
Alternativelong-haultractor-trailerbatterysizeassumption 21
TableA1
.
Assumptionsonannualmileage,meandailymileage,and
standarddeviationofthedailymileageperVECTOgroup 29
TableA2
.
Lengthofthecomprehensive(total)andcoreroadnetwork
intheEU-27MemberStates 30
TableA3
.
Batteryelectrictrucks’stockperMemberStateby2030under
LowandHighmarketuptakescenarios 31
TableA4
.
VECTOgroups’mainattributes 32
TableA5
.
Shareoftrafficactivityintonne-kmacrossthecoreand
comprehensivenetworksinEUMemberStates 32
1ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
INTRODUCTION
DecarbonizingtheEuropeanUnion(EU)roadfreightsectorwillrequireasignificantshareofzero-emissiontrucks(ZETs)1coveringabroadspectrumoftrucking
applications,fromlast-miledeliverytolong-haulcross-bordershipping.In2024,over14,000ZETswereregisteredintheEU.Ofthese,3,400wereheavy-dutytruckswithagrossvehicleweight(GVW)above12tonnes,representing1.2%ofheavytrucksales.Light-andmedium-dutytrucksbelow12tonnesrecordeda10%ZETmarketsharein2024,asignificantincreasefromthe6%sharein2023(Mulholland&Ragon,2025).
ThisincreaseinZETsaleshaslargelybeendrivenbyEUheavy-dutyvehicle(HDV)carbondioxide(CO2)standards(Regulation(EU)2024/1610,2024).Afterthe
mostrecentreviewofthestandardsinMay2024,manufacturersmustreducetheir
fleet-wideCO2emissionsby45%by2030relativeto2019.Manufacturersmay
pursuetwomainpathwaystocomplywiththistarget:improvingtheefficiencyof
theirconventionaldieselandnaturalgasvehicles,orincreasingtheirsalessharesof
ZETs.Manufacturersareexpectedtopursueastrategycombiningbothoptions.ThestringencyofthetargetsiswellbeyondtheCO2reductionpotentialofdieselenginetechnology(Basma&Rodríguez,2023),implyingthatmanufacturerscanonlycomplybyrampinguptheirsalesofZETs.
Batteryelectrictrucks(BETs)areexpectedtodominatethesalesofZETsduetotheirtechnologicalmaturityandsuperioreconomicperformance(Basma&Rodríguez,
2023).TheexpectedBETfleetwillrequireanextensivepubliccharginginfrastructurenetworktocoveritsenergyneeds.Tothisend,theEUissuedtheAlternativeFuels
InfrastructureRegulation(AFIR;Regulation(EU)2023/1804,2023),whichaimsto
ensureminimumpublicinfrastructuresupportforalternativefuelvehiclesbysetting
targetsforpublicEVchargerdeploymentthroughouttheEU.2TheAFIRisexpectedtobereviewedbeforetheendof2026,providinganopportunitytoassesswhethersuchtargetsaresufficienttoaccommodatetheexpectedBETfleetby2030.
ThisstudyestimatestheamountandtypeofcharginginfrastructureneededtomeetBETdemandintheEUby2030.TheanalysismainlyreliesontheICCT’sRoadmap
model(ICCT,n.d.)andHDVCHARGEmodelstoquantifyvehiclestocks,energyneeds,andcharginginfrastructurerequirements,asexplainedinthemethodologysection.
TheresultsarethencomparedtotheAFIRminimumtargets.
1ZETs,asdefinedbyRegulation(EU)2024/1610,includebatteryelectric,hydrogenfuel-cell,andhydrogencombustiontrucksthatemitlessthan3gCO2/tonne-km.
2Regulation(EU)2023/1804definesalternativefuelsas“fuelsorpowersourceswhichserve,atleast
partly,asasubstituteforfossiloilsourcesintheenergyusedfortransportandwhichhavethepotentialtocontributetoitsdecarbonisationandenhancetheenvironmentalperformanceofthetransportsector.”
2ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
POLICYBACKGROUND
TheAFIRwasfirstproposedbytheEuropeanCommissionin2021aspartofthe“Fitfor55”packageofclimate-relatedlegislativemeasures(EuropeanCommission,2021b)andwasultimatelypassedin2023(Regulation(EU)2023/1804,2023).TheregulationsetsbindingtargetsforEUMemberStatestodeployalternativefuelinfrastructure,mainlychargingandhydrogenrefuelingstations,forseveraltransportsectors,includingroadtransport.ConcerningHDVs,theregulationincludesthreetypesoftargetsregarding
infrastructuredeployment:
»Distance-basedtargetsalongtheTrans-EuropeanTransportNetwork(TEN-T);»Targetsaturbannodes,suchasmajorports,rails,androadterminals;and
»Targetsatsafeandsecureparkingareas,referringtoparkingareasaccessibletodriversengagedinthecarriageofgoodsorpassengers.
Table
1summarizestheAFIRtargetsforHDVsbetween2025and2030.Bytheendof2025,EUMemberStatesarerequiredtodeployatleastonepublicrechargingpool
withaminimumtotalaggregatedpowerof1,400kWevery120kmineachdirectionoftravelover15%ofthecoreandcomprehensiveTEN-T.Forfutureyears,theminimum
totalpowerincreasesandthedistanceseparatingtworechargingpoolsdecreases,
implyingadenserpubliccharginginfrastructurenetwork.Regardingurbannodes,theAFIRmandatesaminimumtotalaggregatedpowerof900kWin2025,whichincreasesupto1,800kWby2030.Asforthesafeandsecureparkingareas,thetargetisto
haveatleasttwo100kWchargingstationsby2027andfourby2030.MoredetailsontheserequirementscanbefoundinBernard(2023).Regulation(EU)2023/1804(2023)statesthatthesetargets,amongotherAFIRcomponents,willbereviewedbyDecember2026andevery5yearsthereafter.
Table1
SummaryoftheAFIRtargetsforHDVsbetween2025and2030
Targettype
Date
Requirement
Distance-based
2025
Onerechargingpoolwithaminimumtotalaggregatedpowerof1,400kWevery120kmineachdirectionoftravelover15%ofthecoreandcomprehensiveTEN-T,withatleastone350kWchargingpoint.
2027
Onerechargingpoolwithaminimumtotalaggregatedpowerof2,800kWevery120kmineachdirectionoftravelover50%ofthecoreandcomprehensiveTEN-T,withatleastone350kWchargingpoint.
2030
Onerechargingpoolwithaminimumtotalaggregatedpowerof3,600kWevery60kmineachdirectionoftraveloverthecoreTEN-T,withatleastone350kWchargingpoint.
Onerechargingpoolwithaminimumtotalaggregatedpowerof1,500kWevery100kmineachdirectionoftraveloverthecomprehensiveTEN-T,withatleastone350kWchargingpoint.
Urbannodes
2025
Onerechargingpoolwithaminimumtotalaggregatedpowerof900kW,withatleastone150kWchargingpoint.
2030
Onerechargingpoolwithaminimumtotalaggregatedpowerof1,800kW,withatleastone150kWchargingpoint.
Safeand
secureparkingareas
2027
Atleasttwo100kWchargingstations.
2030
Atleastfour100kWchargingstations.
Note:AccordingtotheAFIR,arechargingpointis“afixedormobile,on-gridoroff-gridinterfacethatallows
forthetransferofelectricitytoanelectricvehicle,which,whileitmayhaveoneorseveralconnectorsto
accommodatedifferentconnectortypes,iscapableofrechargingonlyoneelectricvehicleatatime,andexcludesdeviceswithapoweroutputlessthanorequalto3.7kWtheprimarypurposeofwhichisnotrechargingelectricvehicles.”Arechargingpoolrefersto“oneormorerechargingstationsataspecificlocation,”whilearechargingstationreferstoa“physicalinstallationataspecificlocation,consistingofoneormorerechargingpoints.”
3ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
METHODOLOGY
Thissectionpresentsthemethodologyusedtoquantifythecharginginfrastructure
needsforheavy-dutyelectrictrucks.Thismethodologycomprisestwomainparts:
1.Truckfleetsalesandstocks.Totalannualsalesandstocksofelectrictrucksare
calculatedusingtheICCT’sRoadmapmodel(ICCT,n.d.),consideringtwoscenariosforthepaceoftruckelectrification.
2.Truckcharginginfrastructureneeds.CharginginfrastructureneedsareestimatedusingtheICCT’sHDVCHARGEmodel(Schmidtetal.,2024),quantifyingtheenergydemandsassociatedwiththeprojectedtruckfleetconsideringtruckcharging
patternsandinfrastructureutilization.
Thistwo-partmethodologyisillustratedinFigure1andexplainedingreaterdetailbelow.
Figure1
Schematicofthemethodologyemployedtoquantifythecharginginfrastructureneeds
Truckfleetcharginginfrastructureneeds(ICCTHDVCHARGEmodel)
Truckfleetsalesandstocks(ICCTRoadmapmodel)
Energy
consumption
CalculateZEVdailyenergyneeds
Dailymileagedistribution
Market
development
scenario
DieseltrucksCO2emissions
Fleet
composition
CalculateZEVsharespertruckclass
Batterysize
Location
Setchargingpatterns
pertruckclass
(depot,public)
Fleet
growthrate
Fleetsurvivial
curves
Type
CalculateZEV
fleetstocks
(overnight,fast)
Duration
Chargerpower
rate
Calculatetotalpower
demandandcharger
Charger
utilization
numbers
THEINTERNATIONALCOUNCILONCLEANTRANSPORTATIONTHEICCT.ORG
Themagnitude,type,andlocationofcharginginfrastructureforBETsintheEUwill
mainlybedictatedbythetotalnumberofBETs,consideringdifferencesinapplicationthatimpactchargingpatterns.Asshownin
Table
2,thisanalysisconsidersthemain
regulatedVehicleEnergyConsumptioncalculationTOol(VECTO)groupsandexcludes
4ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
busesandcoaches.3Forsimplicity,thedifferenttruckgroupsconsideredinthis
analysisarefurtherclusteredintofourcategories:long-haulheavytrucks,regional
heavytrucks,lightandmediumtrucks,andvocationaltrucks.Together,theVECTO
groupscoveredinthisstudyrepresented86%ofalltrucksalesintheEUin2024.TableA4intheappendixsummarizesthemainattributesofthesegroups.
Table2
VECTOgroupsconsideredandcategoriesusedinthisanalysis
Category
VECTOgroups
Long-haulheavytrucks
4-LH,5-LH,9-LH,and10-LH
Regionalheavytrucks
4-UD,4-RD,5-RD,9-RD,and10-RD
Lightandmediumtrucks
1,2,and3
Vocationaltrucks
11,12,and16
TRUCKFLEETSALESANDSTOCKS
First,electrictrucksharesinagivenyearwereestimatedbasedontwoscenariosofBETuptakeby2030:
1.Lowscenario:ThisscenarioconsiderstheminimumsharesofZETsneededforEuropeantruckmanufacturerstomeetthe45%CO2reductiontargetby2030.
2.Highscenario:ThisscenariomodelsfasterBETuptake,basedontheexpected
sharesofBETsin2030accordingtoconfidentialconsultationsbetweentruck
manufacturersandtheGermangovernmentundertakenin2024(Nationale
OrganisationWasserstoff-undBrennstoffzellentechnologie[NOWGmbH],2024).
Salesandstockswerethencalculatedbasedontheexpectedgrowthinfleetactivity
overtimeandthevehiclesurvivalrate,amongothervariables,usingtheICCTRoadmapmodel(ICCT,n.d.).
Estimatingelectrictrucksalesshares
Lowscenario
UndertheLowscenario,sharesofZETsrequiredformanufacturercomplianceby2030willheavilydependontheCO2emissionsofdieseltrucks—which,inturn,hingeontheextenttowhichdieseltrucktechnologyhasimprovedrelativetothe2019reporting
period.4SharesofZETsrequiredforcompliancebythe2030reportingperiodwillalsodependonanycreditsgeneratedbytruckmanufacturersbetween2026and2029.
Manufacturerscangeneratecreditsiftheymanagetoreducetheiremissionsbelowtheemissiontrajectoryline,astraightlinedrawnbetweenthe2025and2030CO2reductiontargets.Thisanalysisdoesnotconsidercreditstopresentanupper-endestimateofBETsalessharesneededunderthisscenario.
BasedonEuropeanEnvironmentAgency(EEA)data,dieseltrucks’CO2emissions,
expressedingCO2/tonne-km,slowlydeclinedbetweenthe2019and2022reportingperiods,byanannualrateofroughly1%(EEA,n.d.).Thisreductionwasmainlyduetoimprovementsintruckaerodynamics,energyefficiency,andtirerollingresistance,ashighlightedinapreviousICCTpublication(Musaetal.,2024).
3VECTOisasimulationtoolthatisusedtocertifytheCO2emissionsfromHDVs.
4Forthepurposeofemissionsreporting,EUreportingperiodsrunfromJuly1toJune30ofthefollowingyear;forinstance,the2019reportingyearrunsfromJuly1,2019,toJune30,2020.
5ICCTREPORT|CHARGINGINFRASTRUCTURENEEDSFORBATTERYELECTRICTRUCKSINTHEEUROPEANUNIONBY2030
Dieseltechnologyisexpectedtoimprovefurtherbetween2022and2030.Potentialadvancementsincludereductionsinaerodynamicdragthroughbettercabdesigns,theachievementoflowerrollingresistancethroughtheuseofmoreefficienttires,
andengineefficiencyimprovements.AllmajortruckmanufacturersoperatingintheEUannouncednewtruckmodelsbetween2023and2025,withvehicle-levelfuel
savingsrangingbetween5%and15%comparedwith2022modelsdependingon
theirtechnologypackages.AsummaryofthosetechnologypackagesisincludedinapreviousICCTpublication(Mulholland&Ragon,2025).
ToprojectdieseltruckCO2emissionsandtechnologydevelopmentin2030,we
developedregressionmodelsbasedon2022emissionsdatafromEEA(n.d.).TheCO2emissionsoftrucksbelongingtothesameVECTOgroupcanvarywidelydependingonthetechnologypackagesdeployedineachmodel.TheregressionmodelsestablishedrelationsbetweentruckCO2emissionsandprimarytechnologymetrics,namely
aerodynamicairdrag,rollingresistancecoefficient,andengineaverageefficiency
overtheWorldHarmonizedTruckCycle(WHTC),allofwhicharereportedintheEEAdatabase.WedevelopedaseparateregressionmodelforeachVECTOgroup.
ThemodelsallowedustoquantifytheCO2emissionsofeachVECTOgroupifacertainimprovementwererealizedinthesetechnologymetrics.Forthisanalysis,weassumedthat,by2030,alltechnologymetricswouldconvergetothetop20thpercentilefor
everymanufacturer,giventhestateofthetechnologyinthe2022reportingperiod.Thisrepresentsamoderateassumption,implyingthattruckmanufacturerswillsell
moreoftheirbetter-performingtrucksintermsofCO2emissions,butnotnecessarilytheirbest-in-classmodels.MoredetailsontheformulationoftheregressionmodelscanbefoundinanotherICCTpublication(Mulhollandetal.,2025).
Figure
2showsthe2022CO2emissionsandourmodeled2030emissionsforevery
VECTOgroup.Ingeneral,theprojectedCO2reductionin2030relativeto2022rangesfrom2%to12%.Themostimportantgroupsbyshareofsalesandemissions,groups
5-LHand9-LH,areexpectedtorecordaCO2emissionsreductionabove10%,basedonthedieseltechnologythatwasavailableduringthe2022reportingperiod.
6ICCTREPORT|CHARGINGINFRASTRUCTURE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保健酒面试题目及答案
- 各年级必考题目及答案
- 养老院老人心理咨询师福利待遇制度
- 养老院老人康复设施维修人员考核奖惩制度
- 生产安全考试题目及答案
- 养老院康复设备管理制度
- 办公室员工培训课程评价制度
- 镇招商引资项目评审制度
- 银行岗位分离的相关制度
- 部队盘查登记制度
- 浙江省杭州市西湖区杭州学军中学2025-2026学年物理高二上期末质量跟踪监视试题含解析
- 创伤病人的评估和护理
- 房建工程施工工艺流程
- 设备委托开发合同(标准版)
- 理解人际沟通中的情绪管理和表达技巧应用
- 2025 年四年级语文阅读理解(分析人物形象)突破卷
- 手术室三方核查规范
- 2025年黑龙江省大庆市中考数学试题【含答案、解析】
- 车辆工程系毕业论文
- 七年级语文文言文阅读理解专项训练
- 销售部客户资源管理办法
评论
0/150
提交评论