




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、金融计量学,2,Supplementary自回归条件异方差模型自回归条件异方差(AutoregressiveConditionalHeteroscedasticityModel,ARCH)模型是特别用来建立条件方差模型并对其进行预测的。ARCH模型是1982年由恩格尔(Engle,R.)提出,并由博勒斯莱文(Bollerslev,T.,1986)发展成为GARCH(GeneralizedARCH)广义自回归条件异方差。这些模型被广泛的应用于经济学的各个领域。尤其在金融时间序列分析中。,3,10.5.1ARCH模型为了说得更具体,让我们回到k-变量回归模型:(10.5.1)如果ut的均值为零,对
2、yt取基于(t-1)时刻的信息的期望,即Et-1(yt),有如下的关系:(10.5.2)由于yt的均值近似等于式(10.5.1)的估计值,所以式(10.5.1)也称为均值方程。,4,由于(10.5.7)中ut的方差依赖于前期的平方扰动项,我们称它为ARCH(1)过程:然而,容易加以推广。例如,一个ARCH(p)过程可以写为:(10.5.8),5,如果扰动项方差中没有自相关,就会有H0:这时从而得到扰动项方差的同方差性情形。恩格尔曾表明,容易通过以下的回归去检验上述虚拟假设:其中,t表示从原始回归模型(10.5.1)估计得到的OLS残差。,6,10.5.2GARCH(1,1)模型我们常常有理由认
3、为ut的方差依赖于很多时刻之前的变化量(特别是在金融领域,采用日数据或周数据的应用更是如此)。这里的问题在于,我们必须估计很多参数,而这一点很难精确的做到。但是如果我们能够意识到方程(10.5.8)不过是t2的分布滞后模型,我们就能够用一个或两个t2的滞后值代替许多ut2的滞后值,这就是广义自回归条件异方差模型(generalizedautoregressiveconditionalheteroscedasticitymodel,简记为GARCH模型)。在GARCH模型中,要考虑两个不同的设定:一个是条件均值,另一个是条件方差。,7,在标准化的GARCH(1,1)模型中:(10.5.11)(1
4、0.5.12)其中:xt是1(k+1)维外生变量向量,是(k+1)1维系数向量。(10.5.11)中给出的均值方程是一个带有扰动项的外生变量函数。由于t2是以前面信息为基础的一期向前预测方差,所以它被称作条件方差,式(10.5.12)也被称作条件方差方程。,8,(10.5.12)中给出的条件方差方程是下面三项的函数:1常数项(均值):2用均值方程(10.5.11)的扰动项平方的滞后来度量从前期得到的波动性的信息:ut2-1(ARCH项)。3上一期的预测方差:t2-1(GARCH项)。GARCH(1,1)模型中的(1,1)是指阶数为1的GARCH项(括号中的第一项)和阶数为1的ARCH项(括号中
5、的第二项)。一个普通的ARCH模型是GARCH模型的一个特例,即在条件方差方程中不存在滞后预测方差t2-1的说明。,9,方差方程的回归因子方程(10.5.12)可以扩展成包含外生的或前定回归因子z的方差方程:(10.5.17)注意到从这个模型中得到的预测方差不能保证是正的。可以引入到这样一些形式的回归算子,它们总是正的,从而将产生负的预测值的可能性降到最小。例如,我们可以要求:,10,高阶GARCH(p,q)模型高阶GARCH模型可以通过选择大于1的p或q得到估计,记作GARCH(p,q)。其方差表示为:(10.5.18)这里,p是GARCH项的阶数,q是ARCH项的阶数。,11,10.5.3
6、ARCH的检验,下面介绍检验一个模型的残差是否含有ARCH效应的两种方法:ARCHLM检验和残差平方相关图检验。1.ARCHLM检验Engle在1982年提出检验残差序列中是否存在ARCH效应的拉格朗日乘数检验(Lagrangemultipliertest),即ARCHLM检验。自回归条件异方差性的这个特殊的设定,是由于人们发现在许多金融时间序列中,残差的大小与最近的残差值有关。ARCH本身不能使标准的OLS估计无效,但是,忽略ARCH影响可能导致有效性降低。,12,ARCHLM检验统计量由一个辅助检验回归计算。为检验原假设:残差中直到q阶都没有ARCH,运行如下回归:式中t是残差。这是一个对
7、常数和直到q阶的滞后平方残差所作的回归。这个检验回归有两个统计量:(1)F统计量是对所有残差平方的滞后的联合显著性所作的一个省略变量检验;(2)TR2统计量是EnglesLM检验统计量,它是观测值个数T乘以回归检验的R2;,13,2.平方残差相关图显示直到所定义的滞后阶数的平方残差t2的自相关性和偏自相关性,计算出相应滞后阶数的Ljung-Box统计量。平方残差相关图可以用来检查残差自回归条件异方差性(ARCH)。如果残差中不存在ARCH,在各阶滞后自相关和偏自相关应为0,且Q统计量应不显著。可适用于使用LS,TSLS,非线性LS估计方程。显示平方残差相关图和Q-统计量,选择View/Resi
8、dualTests/CorrelogramSquaredResidual,在打开的滞后定义对话框,定义计算相关图的滞后数。,14,例10.5沪市股票价格指数波动的GARCH模型为了检验股票价格指数的波动是否具有条件异方差性,本例选择了沪市股票的收盘价格指数的日数据作为样本序列,这是因为上海股票市场不仅开市早,市值高,对于各种冲击的反应较为敏感,因此,本例所分析的沪市股票价格波动具有一定代表性。在这个例子中,我们选择的样本序列sp是1998年1月3日至2001年12月31日的上海证券交易所每日股票价格收盘指数,为了减少舍入误差,在估计时,对sp进行自然对数处理,即将序列log(sp)作为因变量进
9、行估计。,15,由于股票价格指数序列常常用一种特殊的单位根过程随机游动(RandomWalk)模型描述,所以本例进行估计的基本形式为:(10.5.25)首先利用最小二乘法,估计了一个普通的回归方程,结果如下:(10.5.26)(15517)R2=0.994对数似然值=2871AIC=-5.51SC=-5.51,16,可以看出,这个方程的统计量很显著,而且,拟和的程度也很好。但是需要检验这个方程的误差项是否存在条件异方差性,。,17,图10.5股票价格指数方程回归残差,观察上图,该回归方程的残差,我们可以注意到波动的“成群”现象:波动在一些较长的时间内非常小(例如2000年),在其他一些较长的时
10、间内非常大(例如1999年),这说明残差序列存在高阶ARCH效应。,18,因此,对式(10.5.26)进行条件异方差的ARCHLM检验,得到了在滞后阶数p=3时的ARCHLM检验结果:,此处的P值为0,拒绝原假设,说明式(10.5.26)的残差序列存在ARCH效应。还可以计算式(10.5.26)的残差平方的自相关(AC)和偏自相关(PAC)系数,结果如下:,19,10.5.4ARCH-M模型金融理论表明具有较高可观测到的风险的资产可以获得更高的平均收益,其原因在于人们一般认为金融资产的收益应当与其风险成正比,风险越大,预期的收益就越高。这种利用条件方差表示预期风险的模型被称为ARCH均值模型(
11、ARCH-in-mean)或ARCH-M回归模型。在ARCH-M中我们把条件方差引进到均值方程中:(10.5.29)ARCH-M模型的另一种不同形式是将条件方差换成条件标准差:或取对数,20,ARCH-M模型通常用于关于资产的预期收益与预期风险紧密相关的金融领域。预期风险的估计系数是风险收益交易的度量。例如,我们可以认为某股票指数,如上证的股票指数的票面收益(returet)依赖于一个常数项,通货膨胀率t以及条件方差(风险):这种类型的模型(其中期望风险用条件方差表示)就称为GARCH-M模型。,21,在EViews中估计ARCH模型,估计GARCH和ARCH模型,首先选择Quick/Esti
12、mateEquation或Object/NewObject/Equation,然后在Method的下拉菜单中选择ARCH,得到如下的对话框。,22,一、均值方程(Meanequation)在因变量编辑栏中输入均值方程形式,均值方程的形式可以用回归列表形式列出因变量及解释变量。如果方程包含常数,可在列表中加入C。如果需要一个更复杂的均值方程,可以用公式的形式输入均值方程。如果解释变量的表达式中含有ARCHM项,就需要点击对话框右上方对应的按钮。EViews5.0中的ARCH-M的下拉框中,有4个选项:1.选项None表示方程中不含有ARCHM项;2.选项Std.Dev.表示在方程中加入条件标准差
13、;3.选项Variance则表示在方程中含有条件方差2。4.选项Log(Var),表示在均值方程中加入条件方差的对数ln(2)作为解释变量。,23,二、方差设定和分布设定(Varianceanddistributionspecification)EViews5的选择模型类型列表(1)在下拉列表中选择所要估计的ARCH模型的类型。(2)在Variance栏中,可以列出包含在方差方程中的外生变量。(3)可以选择ARCH项和GARCH项的阶数。(4)在Threshold编辑栏中输入非对称项的数目,缺省的设置是不估计非对称的模型,即该选项的个数为0。(5)Error组合框是设定误差的分布形式,缺省的形
14、式为Normal(Gaussian)。,24,三、估计选项(Options)EViews为我们提供了可以进入许多估计方法的设置。只要点击Options按钮并按要求填写对话即可。,25,ARCH的估计结果利用GARCH(1,1)模型重新估计例10.5的式(10.5.25),结果如下:,26,ARCH估计的结果可以分为两部分:上半部分提供了均值方程的标准结果;下半部分,即方差方程包括系数,标准误差,z-统计量和方差方程系数的P值。在方程(10.5.12)中ARCH的参数对应于,GARCH的参数对应于。在表的底部是一组标准的回归统计量,使用的残差来自于均值方程。注意如果在均值方程中不存在回归量,那么
15、这些标准,例如R2也就没有意义了。,27,ARCH模型的视图与过程,一旦模型被估计出来,EViews会提供各种视图和过程进行推理和诊断检验。一、ARCH模型的视图1.Actual,Fitted,Residual窗口列示了各种残差形式。2.条件SD图显示了在样本中对每个观测值绘制向前一步的标准偏差t。t时期的观察值是由t-1期可得到的信息得出的预测值。3.协方差矩阵4.系数检验5.残差检验/相关图-Q-统计量,28,二、ARCH模型的过程1构造残差序列将残差以序列的名义保存在工作文件中,可以选择保存普通残差ut或标准残差ut/t。残差将被命名为RESID1,RESID2等等。可以点击序列窗口中的
16、name按钮来重新命名序列残差。2构造GARCH方差序列将条件方差t2以序列的名义保存在工作文件中。条件方差序列可以被命名为GARCH1,GARCH2等等。取平方根得到如View/ConditionalSDGragh所示的条件标准偏差。,29,3预测例3假设我们估计出了如下的ARCH(1)(采用Marquardt方法)模型:(ARCH_CPI方程中加入CPI做解释变量,留下2001年10月2001年12月的3个月做检验性数据),30,使用估计的ARCH模型可以计算因变量的静态的和动态的预测值,和它的预测标准误差和条件方差。为了在工作文件中保存预测值,要在相应的对话栏中输入名字。如果选择了Dogragh选项EViews就会显示预测值图和两个标准偏差的带状图。,31,估计期间是1/03/1998-9/28/2001,预测期间是10/02/2001-12/31/2001左图表示了由均值方程和SP的预测值的两个标准偏差带。,32,33,非对称ARCH模型,在资本市场中,经常可以发现这样的现象:资产的向下运动通常伴随着比之程度更强的向上运动。为了解释这一现象,Engle和Ng(1993)绘制了好消息和坏消息的非对称信息曲线。波动性0信息,34,本节将介绍3种能够描述这种非对称冲击的模型:TARCH模型、EGAR
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗行业2025年人才流动趋势及培养策略研究报告
- 中职学院学籍管理办法
- 住宅装修管理办法细则
- 人员内部流动管理办法
- 企业电机维修管理办法
- 乡镇工会会员管理办法
- 企业融合销售管理办法
- 临时用地补偿管理办法
- 保险培训管理办法试行
- 临汾供热收费管理办法
- 四川省专业技术人员继续教育2023年公需课试题及答案
- 煤气取样安全操作规程
- 人形机器人行业:人形机器人供应链梳理
- 北京市高考语文名著阅读《红楼梦》试题(附解析)
- GB/T 27622-2011畜禽粪便贮存设施设计要求
- 急性胃肠炎的护理查房
- 第一章-护理学基础绪论
- 烟花爆竹经营单位安全管理人员培训教材课件
- 装修改造工程施工现场总平面布置
- 六年级数学分数除法、解方程计算题 (含答案)
- 高速铁路竣工验收办法
评论
0/150
提交评论