




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,1,DiscreteMathematics,Dr.HanHuang,SouthChinaUniversityofTechnology,2,2,Section2.3,Chapter2.LogicandProof,Sets,andFunction,Functions,3,3,Contents,Introduction,1,OnetoOneFunctionandOntoFunction,2,InverseFunctionsandCompositionofFunctions,3,GraphandSomeCaseofImportantFunction,4,4,4,Introduction,5,Fun
2、ctions,Fromcalculus,youknowtheconceptofareal-valuedfunctionf,whichassignstoeachnumberxRoneparticularvaluey=f(x),whereyR.Example:fdefinedbytherulef(x)=x2Thenotionofafunctioncanbegeneralizedtotheconceptofassigningelementsofanysettoelementsofanyset.Functionsarealsocalledoperators.,6,Function:FormalDefi
3、nition,Afunctionffrom(or“mapping”)AtoB(f:AB)isanassignmentofexactlyoneelementf(x)BtoeachelementxA.Somefurthergeneralizationsofthisidea:Functionsofnarguments:f:(A1xA2.xAn)B.Apartial(non-total)functionfassignszerooroneelementsofBtoeachelementxA.,7,Wecanrepresentafunctionf:ABasasetoforderedpairsf=(a,f(
4、a)|aA.ThismakesfarelationbetweenAandB:fisasubsetofAxB.Butfunctionsarespecial:foreveryaA,thereisatleastonepair(a,b).Formally:aAbB(a,b)f)foreveryaA,thereisatmostonepair(a,b).Formally:a,b,c(a,b)f(a,c)fbc)Arelationovernumberscanberepresentasasetofpointsonaplane.(Apointisapair(x,y).)Afunctionisthenacurve
5、(setofpoints),withonlyoneyforeachx.,8,Functionscanberepresentedgraphicallyinseveralways:,A,B,a,b,f,f,x,y,Plot,BipartiteGraph,LikeVenndiagrams,A,B,9,FunctionsWeveSeenSoFar,Apropositionmightbeviewedasafunctionfrom“situations”totruthvaluesT,Fp=“Itisraining.”s=oursituationhere,nowp(s)T,F.Apropositionalo
6、peratorcanbeviewedasafunctionfromorderedpairsoftruthvaluestotruthvalues:e.g.,(F,T)=T.,Anotherexample:(T,F)=F.,10,Morefunctionssofar,Apredicatecanbeviewedasafunctionfromobjectstopropositions:P:“is7feettall”;P(Mike)=“Mikeis7feettall.”AsetSoveruniverseUcanbeviewedasafunctionfromtheelementsofUto.,11,Sti
7、llMoreFunctions,AsetSoveruniverseUcanbeviewedasafunctionfromtheelementsofUtoT,F,sayingforeachelementofUwhetheritisinS.SupposeU=0,1,2,3,4.ThenS=1,3S(0)=S(2)=S(4)=F,S(1)=S(3)=T.,12,StillMoreFunctions,Asetoperatorsuchasorcanbeviewedasafunctionfromorderedpairsofsets,tosets.Example:(1,3,3,4)=3,13,Anewnot
8、ation,SometimeswewriteYXtodenotethesetFofallpossiblefunctionsf:XY.Thus,fYXisanotherwayofsayingthatf:XY.(Thisnotationisespeciallyappropriate,becauseforfiniteX,Y,wehave|F|=|Y|X|.),14,ANeatTrick,IfweuserepresentationsF0,T1,thenasubsetTSisafunctionfromSto0,1,Therefore,P(S)canberepresentedas0,1S(thesetof
9、allfunctionsfromSto0,1)(Notethatifwealsorepresent2:0,1,thenP(S)canberepresentedas2S.ThepowersetofSissometimeswrittenthiswaytostressthecardinalityofthepowerset.),15,SomeFunctionTerminology,Iff:AB,andf(a)=b(whereaAfisstrictlydecreasingiffxyf(x)f(y)forallx,yindomain;Iffiseitherstrictlyincreasingorstric
10、tlydecreasing,thenfmustbeone-to-one.Doestheconversehold?,27,Iffiseitherstrictlyincreasingorstrictlydecreasing,thenfisone-to-one.Doestheconversehold?NOE.g.,f:NNsuchthatifxiseventhenf(x)=x+1ifxisoddthenf(x)=x-1,28,Onto(Surjective)Functions,Afunctionf:ABisontoorsurjectiveorasurjectioniffitsrangeisequal
11、toitscodomain(bB,aA:f(a)=b).Consider“countryofbirthof”:AB,whereA=people,B=countries.Isthisafunction?Isitaninjection?Isitasurjection?,29,Onto(Surjective)Functions,Afunctionf:ABisontoorsurjectiveorasurjectioniffitsrangeisequaltoitscodomainConsider“countryofbirthof”:AB,whereA=people,B=countries.Isthisa
12、function?Yes(always1c.o.b.)Isitaninjection?No(manyhavesamec.o.b.)Isitasurjection?Probablyyes,30,Onto(Surjective)Functions,Afunctionf:ABisontoorsurjectiveorasurjectioniffitsrangeisequaltoitscodomain.Inpredicatelogic:bBaAf(a)=b,31,Onto(Surjective)Functions,Afunctionf:ABisontoorsurjectiveorasurjectioni
13、ffitsrangeisequaltoitscodomain(bBaAf(a)=b).Think:AnontofunctionmapsthesetAonto(over,covering)theentiretyofthesetB,notjustoverapieceofit.E.g.,fordomain&codomainR,x3isonto,whereasx2isnt.(Whynot?),32,Onto(Surjective)Functions,E.g.,fordomain&codomainR,x3isonto,butx2isnot.(Whynot?)Considerf:RRsuchthat,fo
14、rallx,f(x)=x2.Consideranynegativenumbera=-binR.x(x2=a).Sofisnotsurjective.Considerf:RRsuchthatforallx,f(x)=x3.Consideranynegativenumbera=-binR.Letzbesuchthatz3=b.Then(-z)3=-b=a,33,TheIdentityFunction,ForanydomainA,theidentityfunctionI:AA(alsowrittenIA)onAisthefunctionsuchthateverythingismappedtoitse
15、lfInpredicatelogic:aAI(a)=a.,34,TheIdentityFunction,ForanydomainA,theidentityfunctionI:AA(alsowrittenIA)onAisthefunctionsuchthataAI(a)=a.Istheidentityfunctionone-to-one(injective)?onto(surjective)?,35,TheIdentityFunction,ForanydomainA,theidentityfunctionI:AA(alsowrittenIA)onAisthefunctionsuchthataAI
16、(a)=a.Istheidentityfunctionone-to-one(injective)?Yesonto(surjective)?Yes,36,Theidentityfunction:,IdentityFunctionIllustrations,Domainandrange,x,y,y=I(x)=x,37,IllustrationofOnto,Arethesefunctionsontotheirdepictedco-domains?,38,IllustrationofOnto,Arethesefunctionsonto?,39,IllustrationofOnto,Arethesefu
17、nctionsonto?,onto,notonto,onto,notonto,40,IllustrationofOnto,Arethesefunctions1-1?,onto,notonto,onto,notonto,41,IllustrationofOnto,Arethesefunctions1-1?,not1-1onto,not1-1notonto,1-1onto,1-1notonto,42,42,InverseFunctionandCompositionofFunctions,43,Bijections,Afunctionissaidtobeaone-to-onecorresponden
18、ce,orabijectioniffitisbothone-to-oneandonto.,44,Twoterminologiesfortalkingaboutfunctions,injection=one-to-onesurjection=ontobijection=one-to-onecorrespondence3=1&2,45,Bijections,Forbijectionsf:AB,thereexistsaninverseoff,writtenf1:BAIntuitively,thisisthefunctionthatundoeseverythingthatfdoesFormally,i
19、tstheuniquefunctionsuchthat.,46,Bijections,Forbijectionsf:AB,thereexistsaninverseoff,writtenf1:BAIntuitively,thisisthefunctionthatundoeseverythingthatfdoesFormally,itstheuniquefunctionsuchthat(recallthatIAistheidentityfunctiononA),47,Bijections,Example1:Letf:ZZbedefinedasf(x)=x+1.Whatisf1?Example2:L
20、etg:ZNbedefinedasg(x)=|x|.Whatisg1?,48,Bijections,Example1:Letf:ZZbedefinedasf(x)=x+1.Whatisf1?f1isthefunction(letscallith)h:ZZdefinedash(x)=x-1.Proof:,h(f(x)=(x+1)-1=x,49,Bijections,Example2:Letg:ZNbedefinedasg(x)=|x|.Whatisg1?Thiswasatrickquestion:thereisnosuchfunction,sincegisnotabijection:Therei
21、snofunctionhsuchthath(|x|)=xandh(|x|)=x(NBThereisarelationhforwhichthisistrue.),50,Operatorsoverfunctions,If(“dot”)isann-aryoperatoroverB,thenwecanextendtoalsodenoteanoperatoroverfunctionsfromAtoB.E.g.:Givenanybinaryoperator:BBB,andfunctionsf,g:AB,wedefine(fg):ABtobethefunctiondefinedby:aA,(fg)(a)=f
22、(a)g(a).,51,FunctionOperatorExample,(plus,times)arebinaryoperatorsoverR.(Normaladdition&multiplication.)Therefore,wecanalso“add”and“multiply”functionsf,g:RR:(fg):RR,where(fg)(x)=f(x)g(x)(fg):RR,where(fg)(x)=f(x)g(x),52,FunctionCompositionOperator,Forfunctionsg:ABandf:BC,thereisaspecialoperatorcalled
23、compose(“”).Itcomposes(creates)anewfunctionoutoffandgbyapplyingftotheresultofapplyingg.Wesay(fg):AC,where(fg)(a):f(g(a).g(a)B,sof(g(a)isdefinedandf(g(a)C.Notethatisnon-commutative(i.e.,wedontalwayshavefg=gf).,Notematchhere.,53,FunctionCompositionOperator,“Wedontalwayshavefg=gf“Canyouexpressthisinpre
24、dicatelogic?,54,FunctionCompositionOperator,“Wedontalwayshavefg=gf“Canyouexpressthisinpredicatelogic?(fgx(fg(x)=gf(x).Donotwrite:fgx(fg(x)gf(x)(NotethatthisformulaquantifiesoverfunctionsaswellasordinaryobjectssomethingthatisnotpossibleinFirstOrderPredicateLogic(FOPL),whichiswhatwastaughtearlierinthi
25、scourse.),55,55,GraphandSomeCaseofImportantFunction,56,AsideAboutRepresentations,Itispossibletorepresentanytypeofdiscretestructure(propositions,bit-strings,numbers,sets,orderedpairs,functions)intermsofsomecombinationofotherstructures.Perhapsnoneofthesestructuresismorefundamentalthantheothers.However,logic,andsetsareoftenusedasthefoundationforallelse.E.g.in,57,ACoupleofKeyFunctions,Indiscretemath,wefrequentlyusethefollowingtwofunctionsoverrealnumbers:Thefloorfunction:RZ,wherex(“floorofx”)meansthelargestintegerx.I.e.,x:max(iZ|ix).Theceilingfunction:RZ,wherex(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司目录设计排版方案
- 家政物料补充方案
- 大班健康活动:哭的奥秘
- 小儿护理考试题及答案
- 维护电工考试题及答案
- 油库节约管理方案(3篇)
- 2026版《全品高考》选考复习方案生物1057 课时作业(五十二) 动物细胞工程 含答案
- 消防中队考试题及答案
- 物业车辆维护管理方案
- 面神经麻痹考试题及答案
- 2022年海口投资管理有限公司招聘笔试试题及答案解析
- 青蓝工程师傅心得体会
- 风机基础锚栓安装技术交底
- 2022更新国家开放大学电大《调剂学》网络核心课形考网考作业及答案
- 广西鼎固经纬新材料科技有限公司年加工50万吨矿粉生产项目环评报告表
- 外研版六年级英语下册 Module2 unit1 教学课件PPT小学公开课
- 2021-2022学年人教版数学六年级上册第一单元测试卷【含答案】
- 《别墅设计任务书》word版
- EN 4644-001-2017(高清正版)
- 预应力混凝土简支T形梁桥毕业论文
- 变频器变频altivar71说明书
评论
0/150
提交评论