三鑫初中数学教师解题比赛试卷_第1页
三鑫初中数学教师解题比赛试卷_第2页
三鑫初中数学教师解题比赛试卷_第3页
三鑫初中数学教师解题比赛试卷_第4页
三鑫初中数学教师解题比赛试卷_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三鑫初中数学教师解题比赛试卷说明:本试卷共三大题20小题,满分120分,考试时间120分钟.姓名_ 得分_一、选择题(本大题共6小题,每小题4分,满分24分)1在实数0,中,最小的是( ).AB C0 D2.对于实数、,给出以下三个判断: 若,则 若,则 若,则 其中正确的判断的个数是( ).A3 B2 C1 D0 3如图,在四边形ABCD中,BADADC90,ABAD,CD,点P在四边形ABCD的边上若点P到BD的距离为,则点P的个数为( )A1 B2 C3 D44.设方程的两根分别为,且,则满足( )A B C D且 5如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直

2、线交菱形ABCD的边于M、N两点设AC2,BD1,APx,AMN的面积为y,则y关于x的函数图象大致形状是( )OOOOxxxxyyyy12121212ABCD6如图,O1 的半径为,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2 =8若将O1绕点P按顺时针方向旋转360,在旋转过程中,O1与正方形ABCD的边只有一个公共点的情况一共出现( ) A3次 B5次 C6次 D7次二、填空题(本大题共6小题,每小题4分,满分24分)7已知x,y为实数,且满足=0,那么= 8.已知分别表示的整数部分和小数部分,且,则 .9.若,则= .10. 在直角坐标系中,

3、已知A(1,0)、B(1,2)、C(2,2)三点坐标,若以A、B、C、D为顶点的四边形是平行四边形,那么点D的坐标可以是 . (填序号)ABCxyO(2,0) (0,4) (4,0) (1,4)11如图,ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为:,则tanA的值是_.12.已知函数,其中表示当时对应的函数值,如,则=_.三、解答题(本大题共8小题,满分72分,解答应写出必要文字说明、演算步骤和证明过程)13(本题满分8分)解方程:14(本题满分8分)已知一次函数的随的值的增大而增大,它的图像与两坐标轴构成的直角三角形的面积不超过,反比例函数的图像

4、在二、四象限求满足上述条件的整数的值15. (本题满分8分)已知、是非负实数,且满足条件,求的最大值和最小值16.(本题满分8分)已知不等式的解集为,求不等式的解集17(本题满分10分)如果方程只有一个实数根,求的值及对应的原方程的根18.(本题满分10分)已知ABC是等腰直角三角形,A = 90,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图(1)若BD是AC的中线,求的值;(2)若BD是ABC的角平分线,求的值;(3)试推断的取值范围(直接写出结论,不必证明)并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由EDCABEDCAB19.(本题满分

5、10分)如图1,抛物线yax2bxc(a0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上师范存在一点H,使D、G、H、F四点所围成的四边形周长最小。若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MNBD,交线段AD于点N,连接MD,使DNMBMD。若存在,求出点T的坐标;若不存在,请说明理由图1ABx

6、yODC图2ABxyODCPQEF图3ABxyODC20.(本题满分10分)某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨: 定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形. 结论:在探讨过程中,有三位同学得出如下结果: 甲同学:在钝角、直角、不等边锐角三角形中分别存在_个、_个、_个大小不同的内接正方形. 乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大. 丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据; (2)乙同学的结果正确吗?若不正确,

7、请举出一个反例并通过计算给予说明,若正确,请给出证明; (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为).初中数学教师解题比赛答案一、选择题(本大题共6小题,每小题4分,满分24分)16:DCBDCB二、填空题(本大题共6小题,每小题4分,满分24分)7 -2 8. 9. 1 10. 11_ 12. _5151_.三、解答题13(本题满分8分)解方程:解:由题意得: (2分) 由方程(2)得:代人(1)式得 (4分) 解得,或(6分)代人得或(8分)14(本题满分8分)已知一次函数的随的值的增

8、大而增大,它的图像与两坐标轴构成的直角三角形的面积不超过,反比例函数的图像在二、四象限求满足上述条件的整数的值解:依题意知: ,解之得: 所以整数的值为:1或2。15. (本题满分8分)已知、是非负实数,且满足条件,求的最大值和最小值 解:由,得: 所以 又 得: 所以,即的最大值是130,最小值是120.16.(本题满分8分)已知不等式的解集为,求不等式的解集解:因为不等式的解集为。 所以 得:, 故,所以不等式的解集为: 17(本题满分10分)如果方程只有一个实数根,求的值及对应的原方程的根解:原方程可化为: (1) 因为原方程只有一个实数根,所以方程(1)的根的情况为: 方程(1)有两个

9、相等的实数根,即: , 此时方程(1)有两相等的实数根: 方程(1)有两个不相等的实数根,其中一根是0或2;(i)当时代入(1)得,方程另一根为是原方程的唯一根;(ii)当时代入(1)得,方程(1)另一根为是原方程的唯一根。 因此的值分别为,其对应原方程的根依次为:,1,。18.(本题满分10分)已知ABC是等腰直角三角形,A = 90,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图(1)若BD是AC的中线,求的值;(2)若BD是ABC的角平分线,求的值;(3)试推断的取值范围(直接写出结论,不必证明)并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明

10、理由EDCABEDCAB解法1 设AB = AC = 1,CD = x,则0x1,BC =,AD = 1x在RtABD中,BD2 = AB2 + AD2 = 1 +(1x)2 = x22x + 2由已知可得 RtABDRtECD, , 即 ,从而 , ,0x1,(1)若BD是AC的中线,则CD = AD = x =,得 (2)若BD是ABC的角平分线,则 ,得 ,解得 , (3)若,则有 3x210x + 6 = 0,解得 (0,1), ,表明随着点D从A向C移动时,BD逐渐增大,而CE逐渐减小,的值则随着D从A向C移动而逐渐增大解法2 设AB = AC = 1,ABD = a,则 BC =,

11、CBE = 45a在RtABD中,有 ;在RtBCE中,有 CE = BC sinCBE =sin(45a)因此下略解法3 (1) A =E = 90,ADB =CDE, ADBEDC, 由于D是中点,且AB = AC,知AB = 2 AD,于是 CE = 2 DE在RtADB中,BD =在RtCDE中,由 CE2 + DE2 = CD2,有 CE2 +CE2 = CD2,于是而 AD = CD,所以 (2)如图,延长CE、BA相交于点F BE是ABC的平分线,且BECF, CBEFBE,得 CE = EF,于是 CF = 2 CE又 ABD +ADB =CDE +FCA = 90,且 ADB

12、 =CDE, ABD =FCA,进而有 ABDACF,得 BD = 2 CE,(3)的值的取值范围为1下略19.(本题满分10分)如图1,抛物线yax2bxc(a0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小。若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为

13、点M,过点M作MNBD,交线段AD于点N,连接MD,使DNMBMD。若存在,求出点T的坐标;若不存在,请说明理由图1ABxyODC图2ABxyODCPQEF图3ABxyODC解:(1)设所求抛物线的解析式为:ya(x1)24,依题意,将点B(3,0)代入,得: a(31)240解得:a1所求抛物线的解析式为:y(x1)24 (2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称, 在x轴上取一点H,连接HF、HI、HG、GD、GE,则HFHI设过A、E两点的一次函数解析式为:ykxb(k0),点E在抛物线上且点E的横坐标为2,将x2代入抛物线y(x1)24,得y(21)243 点E

14、坐标为(2,3)又抛物线y(x1)24图像分别与x轴、y轴交于点A、B、D 当y0时,(x1)240, x1或x3 当x0时,y143,点A(1,0),点B(3,0),点D(0,3)又抛物线的对称轴为:直线x1,EF图6ABxyODCQIGHP 点D与点E关于PQ对称,GDGE分别将点A(1,0)、点E(2,3)代入ykxb,得: 解得:过A、E两点的一次函数解析式为:yx1 当x0时,y1 点F坐标为(0,1)又点F与点I关于x轴对称,点I坐标为(0,1)又要使四边形DFHG的周长最小,由于DF是一个定值,只要使DGGHHI最小即可由图形的对称性和、,可知, DGGHHFEGGHHI只有当E

15、I为一条直线时,EGGHHI最小设过E(2,3)、I(0,1)两点的函数解析式为:yk1xb1(k10),分别将点E(2,3)、点I(0,1)代入yk1xb1,得: 解得:过A、E两点的一次函数解析式为:y2x1 当x1时,y1;当y0时,x;点G坐标为(1,1),点H坐标为(,0)四边形DFHG的周长最小为:DFDGGHHFDFEI由和,可知: DFEI四边形DFHG的周长最小为。(3)如图7,由题意可知,NMDMDB,要使,DNMBMD,只要使即可,图7ABxyODCMTN即:MD2NMBD设点M的坐标为(a,0),由MNBD,可得 AMNABD,再由(1)、(2)可知,AM1a,BD,A

16、B4 MD2OD2OM2a29,式可写成: a29 解得:a或a3(不合题意,舍去)点M的坐标为(,0)又点T在抛物线y(x1)24图像上,当x时,y 点T的坐标为(,)20.(本题满分10分)某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨: 定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形. 结论:在探讨过程中,有三位同学得出如下结果: 甲同学:在钝角、直角、不等边锐角三角形中分别存在_个、_个、_个大小不同的内接正方形. 乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大. 丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据; (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明; (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为).25.解: ()1,2,3. 3分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论