Statistics for Management and Economics 10th Keller 课后答案SME10e_SM_ch16_第1页
Statistics for Management and Economics 10th Keller 课后答案SME10e_SM_ch16_第2页
Statistics for Management and Economics 10th Keller 课后答案SME10e_SM_ch16_第3页
Statistics for Management and Economics 10th Keller 课后答案SME10e_SM_ch16_第4页
Statistics for Management and Economics 10th Keller 课后答案SME10e_SM_ch16_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Chapter 1616.1 a The slope coefficient tells us that for additional inch of fathers height the sons height increases on average by .516. The y-intercept is meaningless.b On average the son will be shorter than his father.c On average the son will be taller than his father.16.2 a b 239.652992.16220.8

2、 4611.32,116127.69519.86012.83,600163.84768.0 549.82,91696.04529.2288.978479.21249.23312.51,089156.25412.52512.0625144.00300.03111.4961129.96353.43612.61,296158.76453.68813.77,744187.691205.69014.48,100207.361296.09915.99,801252.811,574.1Total613144.9 39,5611,795.777,882.2= 613= 144.9= 39,561= 7,882

3、.2= = = = 12.08 (.0582)(51.08) = 9.107The sample regression line is = 9.107 + .0582xThe slope tells us that for each additional thousand dollars of advertising sales increase on average by .0582 million. The y-intercept has no practical meaning.16.3 a 8.511572.2513,225977.57.811160.8412,321865.87.61

4、8557.7634,2251,406.07.520156.2540,4011,507.58.020664.0042,4361,648.08.416770.5627,8891,402.88.815577.4424,0251,364.08.911779.2113,6891,041.38.513372.2517,6891,130.58.015064.0022,5001,200.0Total82.01,540674.56248,40012,543.4= 82.0= 1,540= 674.56= 12,543.4= = = = 154.0 (39.17)(8.20) = 475.2The sample

5、regression line is = 475.2 39.17xb. The slope coefficient tells us that for each additional 1 percentage point increase in mortgage rates, the number of housing starts decreases on average by 39.17. The y-intercept has no meaning.16.4ab 42181,7643247563461,15636204250625003511,22513537131,3691694813

6、8141,444196532317961492173371,0894923119936181171298841642323881,444643042857842514029384198736141,29619650418732449126Total4728615,5241,3123,356= 472= 86= 15,524= 3,356= = = = 5.73 (.9675)(31.47) = 24.72The sample regression line is = 24.72 + .9675xThe slope coefficient indicates that for each addi

7、tional hour of television weight increases on average by .9675 pounds. The y-intercept is the point at which the regression line hits the yaxis; it has no practical meaning.16.5a 8020,5336,400421,604,0891,642,640681,4394,6242,070,72197,8527813,8296,084191,241,2411,078,6627921,2866,241453,093,7961,68

8、1,5948730,9857,569960,070,2252,695,6957417,1875,476295,392,9691,271,8388630,2407,396914,457,6002,600,6409237,5968,464413,459,1003,458,832779,6105,92992,352,100739,9708428,7427,056826,102,5642,414,328Total805211,44765,2395,569,844,52117,682,051= 805= 211,447= 65,239= 17,682,051= = = = 21,145 (1,513)(

9、80.5) = 100,652The sample regression line is = 100,652 + 1,513xb. For each additional one degree increase in temperature the number of beers sold increases on average by 1,513. The y-intercept is the point at which the regression line hits the yaxis; it has no practical meaning.16.6 a b = = .2675, =

10、 13.80 .2675(38.00) = 3.635Regression line: = 3.635 + .2675x (Excel: = 3.636 + .2675x)c = .2675; for each additional second of commercial, the memory test score increases on average by .2675. = 3.64 is the y-intercept.16.7a = = 210.4 1.465(13.68) =190.4. Regression line: = 190.4 + 1.465x (Excel: = 1

11、90.4 + 1.465x)b For each additional floor prices increase on average by $1.465 thousand ($1,465). The y-intercept has no practical meaning.16.8 = = 11.55 .0899(45.49) =7.460. Regression line: =7.460 + .0899x (Excel: = 7.462 + .0900x) The slope coefficient tells us that for each additional year of ag

12、e time increases on average by .0899 minutes. The y-intercept has no meaning.16.9 a = = 26.28 (.11697)(37.29) = 30.64. Regression line: = 30.64 .1169x (Excel: = 30.63 .1169x)b The slope coefficient indicates that for each additional year of age, the employment period decreases on average by .1169. =

13、 30.63 is the y-intercept.16.10a= = 14.43 .1898(37.64) = 7.286. Regression line: = 7.286 +.1898x (Excel: = 7.287 +.1897x)b For each additional cigarette the number of days absent from work increases on average by .1898. The y-intercept has no meaning. 16.11= = 49.22 5.347(4.885) = 23.10.Regression l

14、ine: = 23.10 + 5.347x (Excel:= 23.11 + 5.347x)For each addition kilometer a house is away from its nearest fire station the percentage damage increases on average by 5.347.16.12a= = 6,465 44.97(53.93) = 4040. Regression line: = 4040 + 44.97x (Excel: = 4040 + 44.97x)b. For each additional thousand sq

15、uare feet the price increases on average by $44.97 thousand.16.13= = 27.73 (.00138)(1199) = 29.39. Regression line: = 29.39.00138x (Excel: 29.39.00138x)For each additional hour the price decreases on average by .00138 thousand dollars or $4 = = 762.6 64.05(4.75) = 458.4. Regression line:= 4

16、58.4 + 64.05x (Excel: = 458.9 + 64.00x)For each additional occupant the electrical use increases on average by 64.05.16.15 = = 270.3 1.959(59.42) = 153.9. Regression line:= 153.9 + 1.959x (Excel: := 153.9 + 1.958x)For each additional $1,000 of income the weekly food budget increases on average by $1

17、.96.16.16 a = = 17.20 (.3039)(11.33) = 20.64. Regression line: = 20.64 .3039x (Excel: = 20.64 .3038x) b The slope indicates that for each additional one percentage point increase in the vacancy rate rents on average decrease by $.3039. 16.17 a = , = 59.59 .604(68.95) =17.94. Regression line: = 17.94

18、 + .604x (Excel: = 17.93 + .604x)b For each additional inch of height income increases on average by $.604 thousand or $604.16.18 = 93.89 .0514(79.47) = 89.81. Regression line: = 89.81 + .0514x (Excel: = 89.81 + .0514x)For each additional mark on the test the number of non-defective products increas

19、es on average by .0514.16.19 For each commercial length, the memory test scores are normally distributed with constant variance and a mean that is a linear function of the commercial lengths. 16.20 For each number of years of education incomes are normally distributed with constant variance and a me

20、an that is a linear function of the number of years of education.16.21 For each number of hours prices are normally distributed with constant variance and a mean that is a linear function of the number of hour.16.22 b 111113896424415162256063336108919897581562567587064490056010951009025950Total41297

21、30720,9292,468= 41= 297= 307= 20,929= 2,468= = = = = = (Excel: = 8.85) Rejection region: or = = (Excel: t = 10.07, pvalue = .0002. There is enough evidence to infer a linear relationship.There does appear to be a linear relationship.16.23aThere does appear to be a linear relationship.b 3259625755110

22、2512100550294811862503662500150013193471165041284Total214689180,3562,430= 21= 468= 91= 80,356= 2,430= = = = = = (Excel: = 44.75) Rejection region: or = = (Excel: t = 4.23, pvalue = .0134. There is enough evidence to infer a linear relationship.16.24 a = = = (Excel: = 1.347)b Rejection region: or = =

23、 (Excel: t = 3.93, pvalue = .0028. There is enough evidence to infer a linear relationship between advertising and sales.c LCL = .0252, UCL = .0912d =(Excel: = .6066). 60.67% of the variation in sales is explained by the variation in advertising.e There is evidence of a linear relationship. For each

24、 additional dollar of advertising sales increase, on average by .0582. 16.25 = =(Excel: = .2948).= = (Excel: = 31.48) Rejection region: or = = (Excel: t = 1.83, pvalue = .1048. There is not enough evidence to infer a linear relationship between interest rates and housing starts.16.26 = = = Rejection

25、 region: or = = (Excel: t = 6.55, pvalue = 0.) There is enough evidence to conclude that there is a linear relationship between hours of television viewing and how overweight the child is.16.27 = = = Rejection region: or = 168.6= (Excel: t = 8.98, pvalue = 0.) There is evidence of a linear relations

26、hip between temperature and the number of beers sold.16.28 a = = (Excel: = 5.888). Relative to the values of the dependent variable the standard error of estimate appears to be large indicating a weak linear relationship.b = (Excel: = .2893).c Rejection region: or = = (Excel: t = 4.86, pvalue = 0).

27、There is enough evidence to infer a linear relationship between memory test scores and length of commercial.d LCL = .1756, UCL = .359416.29 = = (Excel: = 19.41). Relative to the values of the dependent variable the standard error of estimate appears to be large indicating a weak linear relationship.

28、 =(Excel: = .2566). Rejection region: or = = (Excel: t = 4.07, pvalue = .0002). There is evidence of a linear relationship. The relationship however, is weak.16.30 = = Rejection region: or = = (Excel: t =2.18, pvalue = .0305.) There is evidence of a linear relationship between age and time to comple

29、te census.16.31 = = (Excel: = 1.813). Relative to the values of the dependent variable the standard error of estimate appears to be large indicating a weak linear relationship. =(Excel: = .1884). There is a weak linear relationship between age and number of weeks of employment.16.32 = = Rejection re

30、gion: or = = (Excel: t =7.49, pvalue = 0.) There is evidence of a positive linear relationship between cigarettes smoked and the number of sick days.16.33 = = (Excel: = 11.11). aRejection region: or = = (Excel: t =9.12, pvalue = 0.) There is evidence of a linear relationship between distance and fir

31、e damage.b LCL = 4.18, UCL = 6.51c =(Excel: = .5004). There is a moderately strong linear relationship between distance and fire damage.16.34 = a= (Excel: = 3,287). There is a weak linear relationship.bRejection region: or = = (Excel: t = 2.24, pvalue = .0309.) There is enough evidence of a linear r

32、elationship.c =(Excel: = .1168) 11.67% of the variation in percent damage is explained by the variation in distance to the fire station. 16.35 = = (Excel: =1.889 ). Rejection region: = = (Excel: t = 1.367, pvalue = .1769/2 = .0885.) There is not enough evidence to infer that as hours of engine use i

33、ncrease the price decreases.16.36 = = (Excel: = 192.5). = (Excel: = .3496) 35.00% of the variation in the electricity use is explained by the variation in the number of occupants. Rejection region: or = = (Excel: t =10.32, pvalue = 0.) There is enough evidence of a linear relationship.16.37 a =(Exce

34、l: = .2459) 24.61% of the variation in food budgets is explained by the variation in household income. b = = (Excel: = 36.94 ). Rejection region: or = = (Excel: t = 6.95, pvalue = 0.) There is evidence of a linear relationship between food budget and household income.16.38 = = (Excel: = 2.873 ). Rej

35、ection region: or = = (Excel: t = 3.39, pvalue = .0021.) There is sufficient evidence to conclude that office rents and vacancy rates are linearly related.16.39 = = (Excel: = 8.28). Rejection region: = = (Excel: t = 3.63, pvalue = .00034/2 = .00017) There is enough evidence to conclude that height a

36、nd income are positively linearly related.16.40 a=(Excel: = .0331) 3.31% of the variation in percentage of defectives is explained by the variation in aptitude test scores. b. = = (Excel: = 1.127). Rejection region: or = = (Excel: t = 1.21, pvalue = .2319) There is not enough evidence to conclude th

37、at aptitude test scores and percentage of defectives are linearly related.16.41Rejection region: (Excel: t = 1.367, pvalue = .0885) There is not enough evidence to infer a negative linear relationship.16.42 Rejection region: or (Excel: t = 4.86, pvalue = 0) This result is identical to the one produc

38、ed in Exercise 3Rejection region: or (Excel: t = 6.95, pvalue = 0.) There is evidence of a linear relationship between food budget and household income.16.44Rejection region: (Excel: t = 7.49, pvalue = 0.) There is evidence of a positive linear relationship between cigarettes smoked and the

39、 number of sick days.16.45H0:1 = 0H1:1 0t = -1.45. There is not enough evidence to conclude that the more education one has the more one watches news on the Internet. If anything the opposite appears to be the case. 16.46H0:1 = 0H1:1 0t = 15.37, p-value = 5.43E-50 0. There is enough evidence to infe

40、r that there is a positive linear relationship between income and education.16.47H0:1 = 0H1:1 0t = 10.68, p-value = 3.94E-25 0. There is enough evidence to infer that there is a positive linear relationship between age and number of days watching national news on television.16.48H0:1 = 0H1:1 0t = 6.

41、58, p-value = 6.06E-11 0. There is enough evidence to infer that Age and intention to vote are linearly related.16.49H0:1 = 0H1:1 0t = .69, p-value = .4915. There is not enough evidence to infer that there is a linear relationship between income and time listening to news on the radio.16.50H0: = 0H1

42、: 0t = 5.34, p-value = 0. There is enough evidence to infer that there is a linear relationship between income and position on the question should the government reduce income differences between rich and poor.16.51b1 = 520.18, = 77.70. The 95% confidence interval estimate of 1: = 520.18 1.96(77.70)

43、 = 520.18 152.29. We estimate that the average increase in income for each additional year of age lies between $367.89 and $62H0: = 0H1: 0t = 5.73, p-value = 0. There is enough evidence to infer a positive linear relationship between age and hours of watching television per day.16.56H0:1 =

44、 0H1:1 0t = 16.90, p-value = 0. There is enough evidence of a positive linear relationship between total family income and the number of earners is the family.b1 = 18,417, = 1089.7. The 95% confidence interval estimate of 1: = 18417 1.96(1089.7) = 18417 2136. We estimate that the average increase in

45、 total family income for each additional earner in the family $16,281 and $20,553.16.57H0: = 0H1: 0t = 4.24, p-value = 0. There is enough evidence to conclude that more educated (EDUC) people are more likely to support government action to reduce income differences across the country differences. 16

46、.58H0: = 0H1: 0t = 24.19, p-value = 0. There is sufficient evidence to conclude that a married persons years of education are positively linearly related to his or her spouses level of education.16.59H0: = 0H1: 0t = 1.33, p-value = .0920. There is not enough evidence to infer that as people become r

47、icher they tend to have more16.60H0: = 0H1: 0t = 14.56, p-value = 0. There is sufficient evidence to infer a positive linear relationship between years of education and the age when one has his or her first child.16.62H0: = 0H1: 0t = 19.70, p-value = 0. There is enough evidence to infer that the amo

48、unt of education one completes influences the amount of education his son or daughter completes.16.64H0: = 0H1: 0t = 20.84, p-value = 0. There is enough evidence to conclude that there is a positive linear relationship between the years of education and the years of education of ones mother.16.65H0:

49、 = 0H1: 0t = 3.04, p-value = .0012. There is sufficient evidence to conclude that harder working Americans are more likely to urge to want government to reduce income differences.16.66 The prediction interval provides a prediction for a value of y. The confidence interval estimator of the expected v

50、alue of y is an estimator of the population mean for a given x.16.67 Yes, because 16.68 Prediction interval: (where =Lower prediction limit = 11.10, Upper prediction limit = 16.42 (Excel: 11.10, 16.41)16.69 Confidence interval estimate: (where LCL = 149.94, UCL = 252.06 (Excel: 149.75, 252.25)16.70 a Prediction interval: (where =Lower prediction limit =2.086, Upper prediction limit = 16.200 (Excel: 2.095, 16.209)b Confidence interval

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论