




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 微积分的发展历史简介 1.1微积分的概念微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。基本定义设函数在上有解,在中任意插入若干个分点把区间分成个小区间在每个小区间上任取一点,作函数值与小区间长度的乘积并作出和如果不论对怎样分法,也不论在小区间上的点怎样取法,只要当区间的长度趋于零时,和总趋于确定的极限,这时我们称这个极限为函数在区间a,b上的定积分记作K。微积分的基本概念和内容包括微分
2、学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。一元微分定义设函数)在某区间内有定义,及在此区间内。如果函数的增量可表示为 (其中是不依赖于的常数),而是比高阶的无穷小,那么称函数在点是可微的,且称作函数在点相应于自变量增量的微分,记作,即通常把自变量的增量称为自变量的微分,记作,即。于是函数的微分又可记作。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。几何意义设是曲线上的点的在横坐标上的增量,是曲线在点对应在纵坐标上的增量,是曲线在点的切线对应在纵坐标上的增量。当很小时,比要小得多(高阶无穷小),因此在点附近,我们可以
3、用切线段来近似代替曲线段。多元微分多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。为函数在点处的全增量,(其中不依赖于和,而只与有关,即是在点的全微分。总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。1.2微积分的发展阶段(1) 早期导数概念-特殊的形式 大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿求最大值与最小值的方法。在作切线时,他构造了差分,发现的因子就是我们现在所说的导数。 (二)17世纪-广泛使用的“流数术” 17世纪生产力的发展推动了自然科学和技术的发展
4、,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是求曲边形面积、运用无穷多项方程的计算法和流数术和无穷级数,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。 (三)19世纪导数-逐渐成熟的理论 1750年达朗贝尔在为法国科学家院出版的百科全书第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:。1823年,柯西在他
5、的无穷小分析概论中定义导数:如果函数在变量的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了语言,对微积分中出现的各种类型的极限重加表达,导数的定义也就获得了今天常见的形式。1.3微积分思想的形成 微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的庄子一书的“天下篇”中,记有“一尺之棰,日
6、取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工
7、作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了流数法和无穷级数,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内部审计机构管理办法
- 制盐公司基金管理办法
- 冬天暖棚蜜蜂管理办法
- 公益互助基金管理办法
- 单片机驱动电梯控制系统设计
- 畜禽肌内脂肪沉积与代谢调控基因的研究进展
- 民企退休人员管理办法
- 体检信息保密管理办法
- 目标设定:投资发展部绩效考核指标
- 北京首个露营管理办法
- 湖南长沙长郡中学高一分班考试化学试卷
- 衡水市武强县事业单位考试历年真题
- 髋臼周围截骨术治疗成人髋关节发育不良
- 各科门诊诊所技术操作规程
- 新教材人教版高中化学选择性必修1全册课时练习及章末检测含解析
- 浙江省建设工程施工费用定额相关费用计算程序表及费用取费费率换算表【实用文档】doc
- 《Windows网络操作系统》教学教案
- GB/T 23280-2009开式压力机精度
- GB/T 20041.21-2008电缆管理用导管系统第21部分:刚性导管系统的特殊要求
- GB/T 17213.4-2015工业过程控制阀第4部分:检验和例行试验
- 教师师风师德培训 课件
评论
0/150
提交评论