




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、a,1,Multifactor Explanations of Asset Pricing Anomalies,Fama and French,a,2,ABSTRACT,普通股的平均收益率与公司特征有关:大小、earnings/price,cash flow/price,book-to-equity,长期历史收益与短期历史收益等等有关。而这些是不能被CAPM所解释,故被称为市场异象。 笔者发现,除了短期收益率,大部分市场异常在三因素模型中都消失了。,a,3,市场异常,DeBondt and Thaler(1985):low long-term past returns tend to have
2、 higher future returns Jegadeesh and Titman(1993):short-term returns tend to continue 其他人发现平均股票收益率还与诸如:size(ME=P*No. of shares)、BE/ME、E/P、C/P and past sales growth有关。因为这些都不能用CAPM解释,故被称为异象。 笔者认为,很多基于CAPM的股票收益率异象是相关联的。而且都可以用Fama and French的3因素模型来解释。 3因素模型: 可以被三个因素解释 1. 市场组合的超额收益 2.小股票与大股票组合的收益率差:SMB 3
3、.高B/P与低B/P的组合的收益率差:HML,a,4,三因素模型阐述,模型表述 回归模型,a,5,Relative distress,BE/ME and slopes on HML are proxy for relative distress. Weak firms: low earnings, high BE/ME, positive slopes on HML Strong firms: high earnings, low BE/ME, negative slopes on HML Chan and Chen(1991): covariation in returns related
4、to relative distress which is not captured by the market return and is compensated in average returns. Justify using HML Huberman and Kandel(1987):covariation in returns on small stocks that is not captured by the market return and is compensated in average returns. Justify using SMB,a,6,FF(1993):3-
5、因素模型较好的解释了基于size和BE/ME的组合收益率。FF(1994):使用3-因素模型解释行业收益率。此处,FF要说明3-因素模型解释了基于E/P,C/P,和sales growth组合收益率。 Strong firm: Low E/P, low C/P and high sales growth, negative slopes on HML(HML平均收益率大约是6%每年)imply lower expected returns。 Weak firm: High E/P, High C/P, low sales growth, positive slopes on HML(relat
6、ively distressed),imply higher expected returns. 3因素模型也扑捉了长期收益率的回复效应。 Low long-term past returns(losers) tend to have positive SMB and HML slopes(smaller and relatively distressed)and highter future average returns. Long-term winners tend to be strong stocks that have negative slopes on HML and low
7、future returns.,a,7,3-factor的局限,不能解释short-term returns的延续。与long-term losers一样,low short-term past returns倾向于有正的HML loading。Short-term past winners load negatively on HML. 只有reversal能被解释,continuation不能被解释。不过3因素模型还是解释了大部分异象。 当然,反对声音也比较多的集中在distress的premium上面。(survivor bias, data snooping, real but irr
8、ational),a,8,I. Tests on the 25 FF Size-BE/ME portfolios,Rf为月初观测到的one-month Treasury bill rate. 1963-1993年期间,每年的6月底,把NYSE、AMEX和Nasdaq的股票分为两组(大小,BS),基于该股票的ME到底是高于还是低于NYSE股票的ME中位数。把NYSE、AMEX和Nasdaq的股票分为三组(BE/ME,L30% M40% H30%),基于该股票的BE/ME在NYSE股票的相应位置。七月到明年6月的Value-weight 组合月收益率即可被求出。25size-BE/ME组合是通过类
9、似的手段做出来的。BE/ME比率实际上用了t-1年的BE,和t-1年的ME。他们没有使用负BE的公司和非常规common equity的数据。 RM是所有的size-BE/ME组合股票的value-weight return,还加上被剔除的负BE股票的收益率。,a,9,表1,Small stocks tend to have higher returns than big stocks high-book-market stocks have higher returns than low-BE/ME stocks,a,10,如果3因素模型描述了预期收益,那回归的节距项应该接近0。估计的节距项
10、上看,小股票低BE/ME组合有大的负收益没有解释,大股票低BE/ME组合有正收益没有解释。其余情况还是接近于0的。,a,11,LSV Deciles,LSV1994:检验了基于BE/ME,E/P,C/P 和5年期销售排名构件的10分位组合。不过作者使用的时间仍然是6月,而不是像LSV那样使用4月。而且,作者只使用了NYSE的,包含了所有必要信息的股票 1. Average return and BE/ME,E/P or C/P 有强正相关关系。 2. Past sales growth is negatively related to future return。 3. 表3表明,3因素模型反
11、映了这些模式关系。回归的截距项普遍很小,R2都很大(解释力度都很大)。GRS检验没有拒绝假设(3因素模型描述了平均收益率)。考虑到截距项的大小和GRS检验,3因素模型在LSV deciles上的表现要好于其在25 FF size-BE/ME组合上的表现的。 表3:Higher-C/P produce larger slopes on SMB and HML. 用股价除会计变量得到的特征似乎与HML的回归系数相关。考虑到HML回归系数可以反映relative distress,笔者认为,low BE/ME,E/P and C/P是强势股的特征,而high BE/ME,E/P and C/P是 r
12、elatviely distressed 股票特征。,a,12,表2: Summary statistics for simple monthly excess returns(in percent) on the LSV Equal-weight Deciles:7/63-12/93,366 months,High sales rank, low future returns; low sales-rank, high future returns. 3因素模型捕捉到了这个模式,因为 low sales-rank的股票往往都是distressed stocks。,a,13,表3 3-fact
13、or time- series regressions for monthly excess returns(in percent) on the LSV equal-weight deciles: 7/63-12/93,366 months,截距项非常接近0.尽管sales-rank产生了最大的GRSF-statistic(0.87),但是p-value却是0.56.笔者认为这是重要的问题,因为sales-rank是唯一不是价格变量变化的指标。,Null: the regression intercepts for a set of tem portfolios are all 0.0. p
14、(GRS) is the p-value of GRS. 参见:A test of the efficiency of a given portfolio p11461147,a,14,LSV double-sort portfolios,LSV 认为:用两个会计指标对股票进行分类会更为准确的区分强势股和压力股,进而产生更大的平均收益spread。因为有股价的会计比率会倾向于相关。 笔者于是按照sales-rank和BE/ME,E/P or C/P的方式进行了33的分类。表4也表明,sales-rank确实增加average return spread,a,15,表4 summary stat
15、istics for excess returns(in percent) on the LSV equal-weight double-sort portfolios:7/63-12/93,366 months,Sales-rank,高,低,a,16,表5 3 factor regressions for monthly excess returns(in perent) on the LSV equal-weight double-sort portfolios:7/63-12/93,366 months,3因素模型较好的解释了LSV double-sort 收益率问题。截距项都不显著区别
16、于0.GRS检验也支持了3因素回归模型截距项为零的推断。最小的p值为0.284.,a,17,Portfolios formed on past return,When portfolios are formed on long-term(35 years),past losers tend to be future winners(reversal). When portfolios are formed on short-term(upto one year), past losers tend to be future losers(continuation),a,18,表6 averag
17、e monthly excess returns(in percent) on equal-weight NYSE deciles formed monthly based on continuously compounded past returns,低,高,a,19,表7 3factor regressions for monthly excess returns(in percent) on equal-weight NYSE portfolios formed on past returns: 7/63-12/93,366 months,显著,显著,不显著,3因素模型不能较好的解释基于
18、短期历史收益所建立的组合收益率延续情况。截距项显著不为0,且有符号。,a,20,Exploring 3-factor models,Merton(1973): 提出了intertemporal 优化下的3-fund 定理。一般情况下,会使用value-weight market和另外两个投资者考虑对冲的因素所构建的MMV组合(multifactor-minimum-variance:given expected returns and sensitivities to the state-variables, they have the smallest possible return var
19、iances). 但实际上,任意3个MMV 组合都可以。 FF说:如果三因素模型能较好的描述平均收益问题,那M、S、B、H、L就比较接近MMV组合。进而笔者就检验两个推论:1. M、S、B、H、L中的任意3个应该提供平均收益的类似描述;2. 其中一个的excess return 可以被其他3个完美描述。下图表就是去掉B的表现情况。因为B与M高度相关(S相对好些)。,a,21,第一个不懂,Equation 1 is still legitimate 3-factor risk-return relation as long as the two components of SMB and the two components of HML are MMV.,a,22,表8 regression to explain monthl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废钢物料品种管理办法
- 工厂设备指标管理办法
- 育婴护理课件软件
- 地铁车站保洁培训课件
- 股利理论与政策课件
- 成本培训讲义课件
- 福州闽侯五年级数学试卷
- 福清四年级数学试卷
- 二升三入学数学试卷
- 基底细胞癌的诊断和治疗
- 2025扬州辅警考试真题
- 股份分配与业绩对赌协议合同
- vte护理管理制度
- 2025至2030中国合规行业发展趋势分析与未来投资战略咨询研究报告
- 【人教版】河北石家庄2024-2025学年 四年级下学期期末数学试题【一】有解析
- 2025至2030年中国石晶地板行业市场现状调查及投资前景研判报告
- 2025年卫生系统招聘考试《职业能力倾向测试》新版真题卷(附详细解析)
- 2025-2030年中国下一代测序(NGS)数据分析行业市场现状供需分析及投资评估规划分析研究报告
- 带钢热轧智能控制系统
- 智能安全帽在智慧工地中的应用与管理平台研究
- 2024年重庆三峰环境集团股份有限公司招聘笔试真题
评论
0/150
提交评论