中考数学矩形菱形与正方形填空题_第1页
中考数学矩形菱形与正方形填空题_第2页
中考数学矩形菱形与正方形填空题_第3页
中考数学矩形菱形与正方形填空题_第4页
中考数学矩形菱形与正方形填空题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学矩形菱形与正方形填空题(中考数学矩形菱形与正方形填空题(1 1) 1. (2014上海,第 18 题 4 分)如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形沿着 过点 E 的直线翻折后,点 C、D 分别落在边 BC 下方的点 C、D处,且点 C、D、B 在同一条直 线上,折痕与边 AD 交于点 F,DF 与 BE 交于点 G设 AB=t,那么EFG 的周长为2 的代数式表示) t(用含 t 考翻折变换(折叠问题) 点: 分根据翻折的性质可得 CE=CE, 再根据直角三角形 30角所对的直角边等于 析: 斜边的一半判断出EBC=30, 然后求出BGD=60,

2、 根据对顶角相等 可得FGE=BGD=60,根据两直线平行,内错角相等可得AFG= FGE,再求出EFG=60,然后判断出EFG 是等边三角形,根据等边三角 形的性质表示出 EF,即可得解 解解:由翻折的性质得,CE=CE, 答: BE=2CE, BE=2CE, 又C=C=90, EBC=30, FDC=D=90, BGD=60, FGE=BGD=60, ADBC, AFG=FGE=60, EFG=(180AFG)=(18060)=60, EFG 是等边三角形, AB=t, EF=t=t, t=2tEFG 的周长=3 故答案为:2t 点本题考查了翻折变换的性质,直角三角形 30角所对的直角边等

3、于斜边的 评: 一半,等边三角形的判定与性质,熟记性质并判断出EFG 是等边三角形是 解题的关键 2. (2014山东枣庄,第 17 题 4 分)如图,将矩形ABCD 沿 CE 向上折叠,使点 B 落在 AD 边上的点 F 处若 AE=BE,则长 AD 与宽 AB 的比值是 考点: 分析: 翻折变换(折叠问题) 由 AE=BE,可设 AE=2k,则 BE=3k,AB=5k由四边形 ABCD 是矩形, 可得A=ABC=D=90,CD=AB=5k,AD=BC由折叠的性质可得 EFC=B=90,EF=EB=3k,CF=BC,由同角的余角相等,即可得 DCF=AFE 在 RtAEF 中, 根据勾股定理

4、求出 AF= =k,由 cosAFE=cosDCF 得出 CF=3k,即 AD=3k,进 而求解即可 解答:解:AE=BE, 设 AE=2k,则 BE=3k,AB=5k 四边形 ABCD 是矩形, A=ABC=D=90,CD=AB=5k,AD=BC 将矩形 ABCD 沿 CE 向上折叠,使点 B 落在 AD 边上的点 F 处, EFC=B=90,EF=EB=3k,CF=BC, AFE+DFC=90,DFC+FCD=90, DCF=AFE, cosAFE=cosDCF 在 RtAEF 中,A=90,AE=2k,EF=3k, AF= =,即 k, k, = = = k, , CF=3 AD=BC=

5、CF=3 长 AD 与宽 AB 的比值是 故答案为 点评: 此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的 定义解此题的关键是数形结合思想与转化思想的应用 3.(2014江苏苏州,第13题3分) 已知正方形ABCD的对角线AC= 考正方形的性质 , 则正方形ABCD的周长为4 点: 分根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式 析: 列式计算即可得解 解解:正方形 ABCD 的对角线 AC= =1, , 答: 边长 AB= 正方形 ABCD 的周长=41=4 故答案为:4 点本题考查了正方形的性质, 比较简单, 熟记正方形的对角线等于边长的倍 评: 是解题的关键

6、4. (2014江苏苏州,第 17 题 3 分)如图,在矩形 ABCD 中, 交边 AD 于点 E若 AEED=,则矩形 ABCD 的面积为5 =,以点 B 为圆心,BC 长为半径画弧, 考矩形的性质;勾股定理 点: 分连接 BE,设 AB=3x,BC=5x,根据勾股定理求出 AE=4x,DE=x,求出 x 的值, 析: 求出 AB、BC,即可求出答案 解解:如图,连接 BE,则 BE=BC 答: 设 AB=3x,BC=5x, 四边形 ABCD 是矩形, AB=CD=3x,AD=BC=5x,A=90, 由勾股定理得:AE=4x, 则 DE=5x4x=x, AEED=, 4xx=, 解得:x=(

7、负数舍去) , 则 AB=3x=,BC=5x=, =5,矩形 ABCD 的面积是 ABBC= 故答案为:5 点本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出 x 的值,题 评: 目比较好,难度适中 5. (2014山东淄博,第 15 题 4 分)已知ABCD,对角线 AC,BD 相交于点 O,请你添加一个适当的条 件,使ABCD 成为一个菱形,你添加的条件是AD=DC 考点: 菱形的判定;平行四边形的性质 专题: 开放型 分析: 根据菱形的定义得出答案即可 解答: 解:邻边相等的平行四边形是菱形, 平行四边形 ABCD 的对角线 AC、BD 相交于点 O,试添加一个条件:可以为:AD

8、=DC; 故答案为:AD=DC 点评: 此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键 6(2014四川宜宾,第 12 题,3 分)菱形的周长为 20cm,两个相邻的内角的度数之比为 1:2,则 较长的对角线长度是 5 考点: 分析: cm 菱形的性质;特殊角的三角函数值 根据菱形的对角线互相垂直且平分各角,可设较小角为x,因为 邻角之和为 180,x+2x=180,所以x=60,画出其图形, 根据三角函数,可以得到其中较长的对角线的长 解答:解:菱形的周长为 20cm 菱形的边长为 5cm 两邻角之比为 1:2 较小角为 60 画出图形如下所示: ABO=30,A

9、B=5cm, 最长边为BD,BO=ABcosABO=5 BD=2BO= = 点评:本题考查了菱形的对角线互相垂直且平分各角,特殊三角函数的 熟练掌握 7(2014四川凉山州,第 14 题,4 分)顺次连接矩形四边中点所形成的四边形是 菱形 学校的 一块菱形花园两对角线的长分别是 6m和 8m,则这个花园的面积为 24m2 考点: 分析: 菱形的判定与性质;中点四边形 因为题中给出的条件是中点,所以可利用三角形中位线性质,以 及矩形对角线相等去证明四条边都相等, 从而说明是一个菱形 根 据菱形的面积公式求出即可 解答:解:连接AC、BD, 在ABD中, AH=HD,AE=EB EH=BD, 同理

10、FG=BD,HG=AC,EF=AC, 又在矩形ABCD中,AC=BD, EH=HG=GF=FE, 四边形EFGH为菱形; 这个花园的面积是6m8m=24m2, 故答案为:菱形,24m2 点评:本题考查了菱形的判定和菱形的面积,三角形的中位线的应用, 注意:菱形的判别方法是说明一个四边形为菱形的理论依据,常 用三种方法:定义,四边相等,对角线互相垂直平分 8 (2014甘肃白银、临夏,第 17 题 4 分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分 当菱形的两条对角线的长分别为 6 和 8 时,则阴影部分的 面积为 考中心对称;菱形的性质 点:

11、分根据菱形的面积等于对角线乘积的一半求出面积, 再根据中心对称的性质判 析: 断出阴影部分的面积等于菱形的面积的一半解答 解解:菱形的两条对角线的长分别为 6 和 8, 答: 菱形的面积=68=24, O是菱形两条对角线的交点, 阴影部分的面积=24=12 故答案为:12 点本题考查了中心对称, 菱形的性质, 熟记性质并判断出阴影部分的面积等于 评: 菱形的面积的一半是解题的关键 29 (2014甘肃兰州,第 17 题 4 分) 如果菱形的两条对角线的长为 a 和 b, 且 a, b 满足 (a1)+ =0,那么菱形的面积等于 考菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根 点:

12、 分根据非负数的性质列式求出 a、b,再根据菱形的面积等于对角线乘积的一 析: 半列式计算即可得解 解解:由题意得,a1=0,b4=0, 答: 解得 a=1,b=4, 菱形的两条对角线的长为 a 和 b, 菱形的面积=14=2 故答案为:2 点本题考查了非负数的性质, 菱形的性质, 主要利用了菱形的面积等于对角线 评: 乘积的一半,需熟记 10. (2014泰州, 第 16 题, 3 分) 如图, 正方向ABCD的边长为 3cm,E为CD边上一点, DAE=30, M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q若PQ=AE,则AP等于1 或 2cm (第 1 题图) 考全等三角形的

13、判定与性质;正方形的性质;解直角三角形 点: 分根据题意画出图形,过P作PNBC,交BC于点N,由ABCD为正方形,得 析: 到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长, 进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL 得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等 得到DE=NQ, DAE=NPQ=30, 再由PN与DC平行, 得到PFA=DEA=60, 进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三 角函数定义求出AP的长,再利用对称性确定出AP的长即可 解解:根据题意画出图形,过P作PNB

14、C,交BC于点N, 答: 四边形ABCD为正方形, AD=DC=PN, 在RtADE中,DAE=30,AD=3cm, tan30=,即DE=cm, =2根据勾股定理得:AE= M为AE的中点, AM=AE= cm, cm, 在RtADE和RtPNQ中, , RtADERtPNQ(HL) , DE=NQ,DAE=NPQ=30, PNDC, PFA=DEA=60, PMF=90,即PMAF, 在RtAMP中,MAP=30,cos30= AP=2cm; , 由对称性得到AP=DP=ADAP=32=1cm, 综上,AP等于 1cm或 2cm 故答案为:1 或 2 点此题考查了全等三角形的判定与性质,正

15、方形的性质,熟练掌握全等三角 评: 形的判定与性质是解本题的关键 11.( 2014福建泉州, 第 14 题 4 分) 如图,RtABC中, ACB=90,D为斜边AB的中点,AB=10cm, 则CD的长为5cm 考直角三角形斜边上的中线 点: 分 根据直角三角形斜边上的中线等于斜边的一半可得CD=AB 析: 解解:ACB=90,D为斜边AB的中点, 答: CD=AB= 10=5cm 故答案为:5 点本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是 评: 解题的关键 12(20XX 年四川资阳,第 15 题 3 分)如图,在边长为 4 的正方形ABCD中,E是AB边上的一点,且 AE=3,点Q为对角线AC上的动点,则BEQ周长的最小值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论