




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三元一次方程组的解法 (1)、三元一次方程的概念三元一次方程组就是含有三个未知数,并且含有的未知数的项都是1次的整式方程。(2)、三元一次方程组的概念一般地,由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组。(3)、三元一次方程组的解法(1)三元一次方程组与二元一次方程组同属于一次方程组,解二元一次方程组基本思想是消元,通过代入法或加减法使二元化成一元,未知转化为已知,受它的启发,解三元一次方程组也通过代入或加减消元,使三元化为二元或一元,转化为我们已经熟悉的问题。(2)三元一次方程组解题的基本步骤:利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的
2、同一个未知数,得到关于另外两个未知数的二元一次方程组。解这个二元一次方程组,求得两个未知数的值;将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。一、三元一次方程组之特殊型例1:解方程组分析:方程是关于x的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x”的目标。解法1:代入法,消x.把分别代入、得解得把y=2代入,得x=8. 是原方程组的解.根据方程组的特点,归纳出此类方程组为:类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程里缺z,因此利用、消z,也能达到消元构成二元一次方程组的目的。 解法
3、2:消z.5得 5x+5y+5z=60 - 得 4x+3y=38 由、得 解得把x=8,y=2代入得z=2. 是原方程组的解.根据方程组的特点,归纳出此类方程组为:类型二:缺某元,消某元型.解方程例2:解方程组分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。解:由+得4x+4y+4z=48, 即x+y+z=12 . -得 x=3,-得 y=4,-得 z=5, 是原方程组的解.根据方程组的特点,归纳出此类方程组为:类型三:轮换方程组,求和作差型.解方程组
4、例3:解方程组分析1:观察此方程组的特点是未知项间存在着比例关系,根据以往的经验,学生看见比例式就会想把比例式化成关系式求解,即由x:y=1:2得y=2x; 由x:z=1:7得z=7x.从而从形式上转化为三元一次方程组的一般形式,即,根据方程组的特点,可选用“有表达式,用代入法”求解。解法1:由得y=2x,z=7x ,并代入,得x=1.把x=1,代入y=2x,得y=2;把x=1,代入z=7x,得 z=7. 是原方程组的解.分析2:由以往知识可知遇比例式时,可设一份为参数k,因此由方程x:y:z=1:2:7,可设为x=k,y=2k,z=7k.从而也达到了消元的目的,并把三元通过设参数的形式转化为
5、一元,可谓一举多得。解法2:由设x=k,y=2k,z=7k,并代入,得k=1.把k=1,代入x=k,得x=1;把k=1,代入y=2k,得y=2;把k=1,代入z=7k,得 z=7. 是原方程组的解. 根据方程组的特点,归纳出此类方程组为:类型四:遇比例式找关系式,遇比设元型.解方程组 二、三元一次方程组之一般型例4:解方程组分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一) 消元的选择1.选择同一个未知项系数相同或互为相反数的那个未知数消元;2.选择同一个未知项
6、系数最小公倍数最小的那个未知数消元。(二) 方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。解:(明确消z,并在方程组中体现出来画线)+ 得5x+2y=16, (体现第一次使用在后做记号)+ 得3x+4y=18, (体现第二次使用在后做不同记号)由、得解得把x=2 ,y=3代人,得 z=1. 是原方程组的解.解方程组 三、三元一次方程组的相关变式题型例五、解方程组解:原方程组可化为由(1)+(3),得(4)由(1)+(2),得(5)由(4)和(5)组成方程组,得解这个方程组,得把代入(1),得 是原方程组的解例六、已知,求的值。解:由题意,得解这个方程组,得当,时, 所求代数
7、式的值为例七 已知方程组的解使代数式的值等于,求的值。解:(2)(1),得(4)(3)+(4),得把代入(2)和(3),得 ,把代入,得 所求的值为例八 甲、乙两同学解方程组,已知甲的正确解答是,乙由于看错了,求出的解是,则求的值。解:把代入原方程组,得 由满足,得和(1)组成方程组,得 解得 所求的值分别为规律总结:解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1次,并且(1),(2),(3)3个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止
8、第一次消去y,第二次消去z或x,仍然得到三元一次方程组,没有达到消“元”的目的。解下列方程组 在此需要说明的是,每一个三元一次方程组的求解方法都不是唯一的,需要进一步的观察,但是只要掌握了最基本的解方程组思想和策略,就可以以不变应万变,就可以很容易的学会三元一次方程组的解法。四、三元一次方程组的实际应用例一:某车间有60人,生产甲乙丙三种零件,每人每小时能生产甲24个,或乙20个,或丙16个,现用零件甲9个,乙15个,丙12个,装配成某机件,如何安排劳动力,才能使每小时生产的零件恰好成套?共有多少套?解:设生产甲、乙、丙三种零件各有x人,y人,z人.根据题意得x+y+z=6024x/9=20y/15=16z/12解得x=12,y=24,z=242412/9=32答:安排生产甲、乙、丙三种零件各有12人,24人,24人,共有32套.例二: 甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的1/3(三分之一)等于丙数的1/2(二分之一),求这三个数。解: 设甲是x,乙是y,丙是z 则x+y+z=35 (1) 甲数的2倍比乙数大5 2x-y=5 (2) 乙数的1/3(三分之一)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省辉县一高2025届高一化学第二学期期末复习检测试题含解析
- 民工工资管理暂行办法
- 国企资产转让管理办法
- 北京教师处境管理办法
- 就业创业指导的新策略
- 公园管理良策管理办法
- 公墓收费管理办法贵州
- “欲说还休”的绝响:戏剧创作的深度探究
- 案件管理办法银保监会
- 沐浴行业消防管理办法
- 2025年内蒙古煤炭地质勘查(集团)一零九有限公司招聘笔试参考题库含答案解析
- T/CBMCA 039-2023陶瓷大板岩板装修镶贴应用规范
- 涂装厂协议书范本
- 服装立体裁剪试题及答案
- 板式家具生产工艺流程
- 《神经母细胞瘤》课件
- 植保知识无人机课件图片
- 材料欠款担保协议书
- T-CCASC 0038-2024 废盐为原料离子膜法烧碱应用核查技术规范
- 工程建设项目EPC总承包管理规范
- 输血错误应急预案及处理流程
评论
0/150
提交评论