版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、电力系统分析基础Power System Analysis Basis(四),主讲人:朱晓荣,第四章 复杂电力系统潮流的计算机算法,基本要求:本章着重介绍运用电子计算机计算电力系统潮流分布的方法。它是复杂电力系统稳态和暂态运行的基础。 运用计算机计算的步骤,一般包括建立数学模型,确定解算方法,制定框图和编制程序,本章着重前两步。,第四章 复杂电力系统潮流的计算机算法,2. 功率方程、节点分类及约束条件,4.1 电力网络方程,电力网络方程指将网络的有关参数和变量及其相互关系归纳起来组成的,反映网络特性的数学方程式组。如节点电压方程、回路电流方程,割集电压方程。相应有: (1)节点导纳矩阵 (2)
2、节点阻抗矩阵 (3)回路阻抗矩阵,网络元件:恒定参数 发电机:电压源或电流源 负荷:恒定阻抗,代数方程,一、节点电压方程,一、节点电压方程,注意: 零电位是不编号的,负荷用阻抗表示,以母线电压作为待求量,电压源变为电流源,以零电位作为参考,根据基尔霍夫电流定律,一、节点电压方程,I2,一、节点电压方程,其中,一、节点电压方程,n 个独立节点的网络,n 个节点方程,一、节点电压方程,n 个独立节点的网络,n 个节点方程,一、节点电压方程,n 个独立节点的网络,n 个节点方程,Y 节点导纳矩阵 Yii 节点i的自导纳 Yij 节点i、j间的互导纳,一、节点电压方程,Y 矩阵元素的物理意义:,二、节
3、点导纳矩阵,自导纳,Y 矩阵元素的物理意义 互导纳,二、节点导纳矩阵,节点导纳矩阵中自导纳的确定,二、节点导纳矩阵,节点导纳矩阵中互导纳的确定,二、节点导纳矩阵,节点导纳矩阵Y 的特点,直观易得 稀疏矩阵 对称矩阵,二、节点导纳矩阵,三、节点导纳矩阵的修改,不同的运行状态,(如不同结线方式下的运行状况、变压器的投切或变比的调整等),改变一个支路的参数或它的投切只影响该支路两端节点的自导纳和它们之间的互导纳,因此仅需对原有的矩阵作某些修改。,Y 矩阵的修改,不同的运行状态,(如不同结线方式下的运行状况、变压器的投切或变比的调整等),三、节点导纳矩阵的修改,Y 矩阵的修改,三、节点导纳矩阵的修改,
4、电力网,Y 增加一行一列(n1)(n1),(1)从原网络引出一条支路增加一个节点,Y 矩阵的修改,三、节点导纳矩阵的修改,Y 阶次不变,Y 矩阵的修改,(2)在原有网络节点i、j之间增加一条支路,三、节点导纳矩阵的修改,Y 阶次不变,(3)在原有网络的节点i、j之间切除一条支路,Y 矩阵的修改,三、节点导纳矩阵的修改,Y 矩阵的修改,(4)在原有网络的节点i、j之间的导纳由yij改变为yij,三、节点导纳矩阵的修改,Y 矩阵的修改,(5)在原有网络的节点i、j之间变压器的变比由k*改变为k*,三、节点导纳矩阵的修改,Y 矩阵的修改,(5)在原有网络的节点i、j之间变压器的变比由k*改变为k*,
5、三、节点导纳矩阵的修改,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,等值电源功率,等值负荷功率,(a)简单系统,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,(b)简单系统的等值网络,一、功率方程和变量、节点的分类,1、功率方程,(c)注入功率和注入电流,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,1、功率方程,42 功率方程及其迭代解法,一、功率方程和变量、节点的分类,2、变量的分类,42 功率方程及其迭代解法,一个电力系统有n个节点,每个节点可
6、能有4个变量Pi,Qi ,ei, fi或Pi,Qi ,Ui, i,而上述功率方程只有2n个,所以需要事先给定2n个变量的值。根据各个节点的已知量的不同,将节点分成三类:PQ节点、PV 节点、平衡节点。,一、功率方程和变量、节点的分类,2、变量的分类,42 功率方程及其迭代解法,(1)、PQ节点(Load Buses) 已知Pi,Qi ,求,ei, fi( Ui, i, ),负荷节点(或发固定功率的发电机节点),数量最多。 (2)、PV节点(Voltage Control Buses) 已知Pi, Ui ,求, Qi, i, ,对电压有严格要求的节点,如电压中枢点. (3)、平衡节点(Slack
7、 Bus or Voltage Reference bus) 已知Ui , i,,求, Pi, Qi, ,只设一个。,一、功率方程和变量、节点的分类,2、变量的分类,设置平衡节点的目的,42 功率方程及其迭代解法,在结果未出来之前,网损是未知的,至少需要一个节点的功率不能给定,用来平衡全网功率。,电压计算需要参考节点。,一、功率方程和变量、节点的分类,3、约束条件,42 功率方程及其迭代解法,实际电力系统运行要求: 电能质量约束条件:Uimin Ui Uimax 电压相角约束条件 |ij|=| i - j | ijmax, 稳定运行的一个重要条件。 有功、无功约束条件 Pimin Pi Pim
8、ax Qimin Qi Qimax,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),42 功率方程及其迭代解法,可改写为:,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),42 功率方程及其迭代解法,假设变量(x1, x2, .,xn)的一组初值( ) 将初值代入迭代格式,完成第一次迭代 将第一次迭代的结果作为初值,代入迭代公式,进行第二次迭代 检查是否满足收敛条件:,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),42 功率方程及其迭代解法,求解过程:,迭代收敛条件:,同一道题可能存在多种迭代
9、格式,有的迭代格式收敛,有的迭代式不收敛。下面讨论收敛条件: 当迭代格式为 定理 如果 则迭代格式 对任意给定的初值都收敛。,42 功率方程及其迭代解法,例 已知方程组 用高斯-塞德尔求解(0.01)。 解:(1)将方程组 改写成迭代公式: (2)设初值 ;代入上述迭代公式,直到|x(k+1)-x(k)| ,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),若式中的aij对于Yij、xi对应Ui,yi对应,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,42 功率
10、方程及其迭代解法,(1),二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),此时可用迭代法求解。如设节点1为平衡节点,其余为PQ节点,则有:,计算步骤为:,42 功率方程及其迭代解法,二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),对各类节点的计算和处理 由于节点的类型不同,已知条件和求解对象不同,约束条件不同,在计算过程中的处理不同。,(1)PQ节点:按标准迭代式直接迭代;,(2)PV节点:已知的式Pp和Up,求解的是Qp,p;按标准迭
11、代式算出Up (k), p (k)后,首先修正:,然后修正,42 功率方程及其迭代解法,(2),二、高斯赛德尔迭代法(既可解线性,也可解非线性方程),对各类节点的计算和处理,检查无功是否越限,如越限,取限值,此时:PVPQ,42 功率方程及其迭代解法,(3),例题:用G-S计算潮流分布,解:网络的节点导纳距阵为:,设 ,代入式(1)求,修正U3为 ,再用式(2)计算:,然后开始第二次迭代:,再修正U3为:,因此,第二次迭代结束时节点2的电压为 节点3的电压相位角为3=2.940,与之对应的节点3的无功功率为Q3=0.0596.,再计算,三、牛顿拉夫逊迭代法(常用于解非线性方程),原理:,按泰勒
12、级数展开,并略去高次项,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),原理:,42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,初值不当不收敛,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法
13、(常用于解非线性方程),42 功率方程及其迭代解法,三、牛顿拉夫逊迭代法(常用于解非线性方程),(1)将xi(0)代入,算出f,J中各元素,代入上式方程组,解出xi(0);,(2)修正xi(1) xi(0) xi(0) ,算出f,J中各元素,代入上式方程组,解出 xi(1) ;,计算步骤:,注意:xi的初值要选得接近其精确值,否则将不迭代。,42 功率方程及其迭代解法,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,节点电压用直角坐标表示:,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,首先对网络中各节点作如下约定: (1)网络中共有n个节点,编号为1,2,3,n;
14、(2)网络中(m1)个PQ节点,一个平衡节点,编号为1,2,m,其中1sm为平衡节点; (3)nm个PV节点,编号为m+1,m+2,,n.,一、潮流计算时的修正方程式,(m-1)个PQ节点(n-m)个PV节点,共n-1个,(m-1)个PQ节点,(n-m)个PV节点,4-3牛顿拉夫逊迭代法潮流计算,(4-36a),(4-36b),(4-36c),一、潮流计算时的修正方程式,相应的:,(4-38),4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,用直角坐标表示的修正方程,PQ节点,PV节点,(4-37),4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,用直角坐标表示的修正方
15、程,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,非对角元素(ij),雅可比矩阵元素值,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,对角元素(i=j),雅可比矩阵元素值,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,以极坐标表示:,4-3牛顿拉夫逊迭代法潮流计算,一、潮流计算时的修正方程式,以极坐标表示的另一种修正方程式为,PQ节点,PV节点,4-3牛顿拉夫逊迭代法潮流计算,用极坐标表示的修正方程式为,一、潮流计算时的修正方程式,4-3牛顿拉夫逊迭代法潮流计算,极坐标法系数推导,展开式,计及,(4-47a),(4-47b),(4-48),一、潮流计算
16、时的修正方程式,极坐标法系数推导,(4-49a),(4-49b),当ij ,对特定的j,只有特定节点的j,从而ij= i- j 是变量,对特定的j,只有该特定节点的Uj是变量,一、潮流计算时的修正方程式,极坐标法系数推导,(4-49c),(4-49d),当i=j ,由于i是变量,从而所有ij= i- j 都是变量,可得,相似地,由于Ui是变量,可得,一、潮流计算时的修正方程式,雅可比矩阵的特点: (1)雅可比矩阵各元素均是节点电压相量的函数,在迭代过程中,各元素的值将随着节点电压相量的变化而变化。因此,在迭代过程中要不断重新计算雅可比矩阵各元素的值; (2)雅可比矩阵各非对角元素均与YijGi
17、jjBij有关,当Yij0,这些非对角元素也为0,将雅可比矩阵进行分块,每块矩阵元素均为22阶子阵,分块矩阵与节点导纳矩阵有相同的稀疏性结构; (3)非对称矩阵。,4-3牛顿拉夫逊迭代法潮流计算,二、潮流计算基本步骤,1. 输入原始数据和信息:y、Pis、Qis、Uis、约束条件 2. 形成节点导纳矩阵YB 3. 设置各节点电压初值ei(0), fi(0) 或Ui(0), i(0) 4. 将初始值代入(4-38)或(4-45)求不平衡量Pi(0), Qi(0), Ui2(0) 5. 计算雅可比矩阵各元素(Hij、Lij、Nij、Jij、Rij、Sij) 6. 解修正方程(4-37) ,求 ei
18、(k), fi(k)或(4-44)求 Ui(k), i(k),4-3牛顿拉夫逊迭代法潮流计算,7. 求节点电压新值ei(k+1) =ei(k) ei(k), fi(k+1) = fi(k) fi(k)或Ui(k+1)= Ui(k) Ui(k), i(k+1) = i(k) i(k+1) 8.判断是否收敛:Max| fi(k) |, Max| ei(k) |或Max| Ui(k |, Max| i(k+1) | 9.重复迭代第4、5、6、7步,直到满足第8步的条件 10. 求平衡节点的功率和PV节点的Qi及各支路的功率,二、潮流计算基本步骤,4-3牛顿拉夫逊迭代法潮流计算,二、潮流计算基本步骤,
19、4-3牛顿拉夫逊迭代法潮流计算,4-4 PQ分解法潮流计算,P-Q分解法是牛顿-拉夫逊法潮流计算的一种简化方法。 牛顿-拉夫逊法的缺点:牛顿-拉夫逊法的雅可比矩阵在每一次迭代过程中都有变化,需要重新形成和求解,这占据了计算的大部分时间,成为牛顿-拉夫逊法计算速度不能提高的主要原因。 P-Q分解法利用了电力系统的一些特有的运行特性,对牛顿-拉夫逊法做了简化,以改进和提高计算速度。,一、潮流计算时的修正方程式,(m-1)(m-1),(n-1)(m-1),4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,1、对修正方程式的第一步简化 高压网络中,各元件的XR,P,相应的J0;U Q,N 0。,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,2、对修正方程式的第二步简化 高压网络中,各元件的XR,使GijBij,再加上系统稳定性的要求,即| i j| | i j|max, | i j|max(10 20)。,3、对修正方程式的第三步简化,4-4 PQ分解法潮流计算,式(4-49a)、(4-49b)、 (4-49c)、(4-49d)可化简为: 式(4-43b) 化简为: 可得: 最终:,一、潮流计算时的修正方程式,4-4 PQ分解法潮流计算,一、潮流计算时的修正方程式,4-4 PQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全稳定运行保障讲解
- 训练营培训制度及流程
- 汽车4s点员工培训管理制度
- 公交公司人员培训制度
- 培训企业文化规章制度
- 新入职海关培训制度
- 培训学校工资奖惩制度
- 高压氧科三基培训制度
- 培训学校考核管理制度
- 一线员工转正培训制度
- 二氧化硅气凝胶的制备技术
- 湖南省岳阳市平江县2024-2025学年高二上学期期末考试语文试题(解析版)
- 2024-2025学年湖北省武汉市江汉区七年级(下)期末数学试卷
- 常规体检指标讲解
- 建筑工程生产管理培训
- 新人教版高中数学必修第二册-第八章 立体几何初步 章末复习【课件】
- 仓库物料效期管理制度
- GB/T 157-2025产品几何技术规范(GPS)圆锥的锥度与锥角系列
- T/CCT 017-2024中低温煤焦油
- 电子公司生产部年终工作总结
- ISO27001:2022信息安全管理体系全套文件+表单
评论
0/150
提交评论