




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、导数的四则运算,2 求导法则,导数很有用,但全凭定义来计算导,四、基本求导法则与公式,三、复合函数的导数,二、反函数的导数,求导法则, 使导数运算变得较为简便.,数是不方便的. 为此要建立一些有效的,返回,一、四则运算求导法则,定理1.,的和、,差、,积、,商 (除分母,为 0的点外) 都在点 x 可导,且,下面分三部分加以证明,并同时给出相应的推论和,例题 .,机动 目录 上页 下页 返回 结束,此法则可推广到任意有限项的情形.,证:,设, 则,故结论成立.,机动 目录 上页 下页 返回 结束,例如,(2),证: 设,则有,故结论成立.,推论:,机动 目录 上页 下页 返回 结束,( C
2、为常数 ),(3),证: 设,则有,故结论成立.,推论:,机动 目录 上页 下页 返回 结束,( C为常数 ),例1.,解:,机动 目录 上页 下页 返回 结束,二、反函数的求导法则,定理2.,y 的某邻域内严格单调可导,证:,在 x 处给增量,由反函数的单调性知,且由反函数的连续性知,因此,机动 目录 上页 下页 返回 结束,例3. 求反三角函数及指数函数的导数.,解: 1) 设,则,类似可求得,利用, 则,机动 目录 上页 下页 返回 结束,2) 设,则,小结:,机动 目录 上页 下页 返回 结束,在点 x 可导,三、复合函数求导法则,定理3.,在点,可导,复合函数,且,在点 x 可导,证:,在点 u 可导,故,(当 时 ),故有,机动 目录 上页 下页 返回 结束,化某些连乘、连除式的求导.,例3. 求,的导数 .,解: 两边取对数 , 化为隐式,两边对 x 求导,机动 目录 上页 下页 返回 结束,1) 对幂指函数,可用对数求导法求导 :,说明:,注意:,机动 目录 上页 下页 返回 结束,2) 有些显函数用对数求导法求导很方便 .,例如,两边取对数,两边对 x 求导,机动 目录 上页 下页 返回 结束,又如,对 x 求导,两边取对数,机动 目录
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年光纤用GECL4项目资金申请报告代可行性研究报告
- 2024年原奶项目项目投资筹措计划书代可行性研究报告
- 医疗协同政策解读课件教学
- 融资平台项目制管理办法
- 衡阳市固体废物管理办法
- 街道应急消防车管理办法
- 装配式物业用房管理办法
- 西安市能源管理办法规定
- 计日工管理办法百度文库
- 证券投资基金管理公司管理办法
- 幼儿新年音乐活动方案
- 卫生院艾滋病培训课件
- 精密空调原理培训
- GB/T 33804-2025肥料级腐植酸钾
- 2025至2030全球及中国公共广播和语音报警系统(PAVA)行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国精酿啤酒行业深度产业运行态势及投资规划深度研究报告
- 2025至2030中国电蚊拍行业发展趋势分析与未来投资战略咨询研究报告
- 体动脉-肺动脉转流术之术后监护要点
- 2025至2030中国腻子粉行业市场发展现状及发展趋势与投资报告
- 糖尿病酮症酸中毒护理问题和措施讲课件
- 女性职场礼仪
评论
0/150
提交评论