2018版高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1_第1页
2018版高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1_第2页
2018版高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1_第3页
2018版高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1_第4页
2018版高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.2.2函数模型的应用实例1会利用给定的函数模型解决实际问题(重点)2能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题(重点、难点)基础初探教材整理函数模型的应用阅读教材P101P106,完成下列问题1常见的函数模型函数模型函数解析式(1)正比例函数模型f(x)kx(k为常数,k0)(2)反比例函数模型f(x)(k为常数,k0)(3)一次函数模型f(x)kxb(k,b为常数,k0)(4)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)(5)指数函数模型f(x)abxc(a,b,c为常数,a0,b0,b1)(6)对数函数模型f(x)mlogaxn(m,n,a为常数,m0,

2、a0,a1)(7)幂函数模型f(x)axnb(a,b,n为常数,a0,n1)(8)分段函数模型f(x)2.建立函数模型解决问题的框图表示图3261某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为yalog2(x1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A300只B400只C600只 D700只【解析】将x1,y100代入yalog2(x1)得,100alog2(11),解得a100.所以x7时,y100log2(71)300.【答案】A2据调查,某自行车存车处在某星期日的存车量为2 000辆次,其

3、中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()Ay0.3x800(0x2 000)By0.3x1 600(0x2 000)Cy0.3x800(0x2 000)Dy0.3x1 600(0x2 000)【解析】由题意知,变速车存车数为(2 000x)辆次,则总收入y0.5x(2 000x)0.80.3x1 600(0x2 000)【答案】D小组合作型一次函数、二次函数模型的应用商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少把购买人数为零时的最低标价称为无效价格,已知无效价格

4、为每件300元现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?【精彩点拨】(1)先设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,列出函数y的解析式,最后利用二次函数的最值即可求得商场要获取最大利润,羊毛衫的标价应定为每件多少元即可;(2)由题意得出关于x的方程式,解得x值,从而即可解决商场要获取最大利润的75%,每件标价为多少元【自主解答】(1)设购买人数为n人,羊毛衫的标价为每件x元,利润

5、为y元,则x(100,300,nkxb(k0),0300kb,即b300k,nk(x300),y(x100)k(x300)k(x200)210 000k(x(100,300),k0,x200时,ymax10 000k,即商场要获取最大利润,羊毛衫的标价应定为每件200元(2)由题意得,k(x100)(x300)10 000k75%,即x2400x37 5000,解得x250或x150.所以,商场要获取最大利润的75%,每件标价为250元或150元在函数模型中,二次函数模型占有重要的地位,根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解

6、决实际问题中的利润最大、用料最省等问题.再练一题1某水厂的蓄水池中有400吨水,每天零点开始由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为100(0t24),求供水开始几小时后,蓄水池中的存水量最少. 【导学号:】【解】设t小时后,蓄水池中的存水量为y吨,则y40060t100(0t24),设u,则u0,2,y60u2100u400602150,当u,即t时,蓄水池中的存水量最少指数函数、对数函数模型的应用声强级Y(单位:分贝)由公式Y10lg 给出,其中I为声强(单位:W/m2)(1)平时常人交谈时的声强约为106W/m2,求其声强级;(2)一般常人能听

7、到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y50分贝,已知熄灯后两个学生在宿舍说话的声强为5107W/m2,问这两位同学是否会影响其他同学休息?【精彩点拨】由公式Y10lg 可以由I求Y,也可以由Y求I,计算I5107W/m2时的声强级并与50作比较就可以判断两位同学是否会影响其他同学休息【自主解答】(1)当I106W/m2时,代入得Y10lg 10lg 10660,即声强级为60分贝(2)当Y0时,即为10lg 0,所以1,I1012 W/m2,则能听到的最低声强为1012 W/m2.(3)当声强I5107W/m2时,声强级Y10lg 10lg (5

8、105)5010lg 550,所以这两位同学会影响其他同学休息1有关对数函数的应用题一般是先给出对数函数模型,利用对数运算性质求解2在实际问题中,有关人口增长、银行利率、细胞分裂等问题常可以用指数函数模型表示,通常可以表示为yN(1p)x,(其中N为基数,p为增长率,x为时间)的形式再练一题2目前某县有100万人,经过x年后为y万人如果年平均增长率是1.2%,请回答下列问题:(1)写出y关于x的函数解析式;(2)计算10年后该县的人口总数(精确到0.1万人);(3)计算大约多少年后该县的人口总数将达到120万(精确到1年)【解】(1)当x1时,y1001001.2%100(11.2%);当x2

9、时,y100(11.2%)100(11.2%)1.2%100(11.2%)2;当x3时,y100(11.2%)2100(11.2%)21.2%100(11.2%)3;故y关于x的函数解析式为y100(11.2%)x(xN*)(2)当x10时,y100(11.2%)101001.01210112.7.故10年后该县约有112.7万人(3)设x年后该县的人口总数为120万,即100(11.2%)x120,解得xlog1.01216.故大约16年后该县的人口总数将达到120万分段函数模型的应用经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近

10、似满足g(t)802t(件),价格近似满足于f(t)(元)(1)试写出该种商品的日销售额y与时间t(0t20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值【精彩点拨】(1)由已知,由价格乘以销售量可得该种商品的日销售额y与时间t(0t20)的函数表达式;(2)由(1)分段求出函数的最大值与最小值,从而可得该种商品的日销售额y的最大值与最小值【自主解答】(1)由已知,由价格乘以销售量可得:y(2)由(1)知当0t10时,yt210t1 200(t5)21 225,函数图象开口向下,对称轴为t5,该函数在t0,5)递增,在t(5,10递减,ymax1 225(当t5时取得),ymin

11、1 200(当t0或10时取得)当10t20时,yt290t2 000(t45)225,图象开口向上,对称轴为t45,该函数在t(10,20递减,t10时,y1 200,ymin600(当t20时取得),由知ymax1 225(当t5时取得),ymin600(当t20时取得)1建立分段函数模型的关键是确定分段的各界点,即明确自变量的取值区间2分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别求出来,再将其合到一起再练一题3国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每

12、多1人,人均费用减少10元,直到达到规定人数75人为止旅行社需支付各种费用共计15 000元. 【导学号:】(1)写出每人需交费用y关于人数x的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?【解】(1)当0x30时,y900;当30x75,y90010(x30)1 20010x;即y(2)设旅行社所获利润为S元,则当0x30时,S900x15 000;当30x75,Sx(1 20010x)15 00010x21 200x15 000;即S因为当0x30时,S900x15 000为增函数,所以x30时,Smax12 000;当30x75时,S10x21 200x15 00010(x60)

13、221 000,即x60时,Smax21 00012 000.所以当旅行团人数为60时,旅行社可获得最大利润探究共研型拟合数据构建函数模型探究1画函数图象的一般步骤有哪些?【提示】列表、描点、连线探究2学校食堂要了解全校师生的午间就餐情况,以备饭菜,你能用数学知识给予指导性说明吗?【提示】第一步:收集样本一周的数据,制成样本点如(1,x1),(2,x2),(7,x7)第二步:描点,对上述数据用散点图的形式,给予直观展示第三步:数据拟合,选择一个合适的数学模型拟合上述样本点第四步:验证上述模型是否合理、有效,并做出适当的调整某企业常年生产一种出口产品,自2013年以来,每年在正常情况下,该产品产

14、量平稳增长已知2013年为第1年,前4年年产量f(x)(万件)如下表所示:x1234f(x)4.005.587.008.44(1)画出20132016年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2017年(即x5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2017年的年产量为多少?【精彩点拨】【自主解答】(1)画出散点图,如图所示(2)由散点图知,可选用一次函数模型设f(x)axb(a0)由已知得解得f(x)1.5x2.5.检验:f(2)5.5,且|5.585.5|0.080.1.f(4)8.5,且|8.448.5|0.0620,即x2 00828.7,解得x2 036.7,又xN,故x2 037.【答案】2 0375已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地(1)把汽车离开A地的距离s表示为时间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论