等差数列课件(第一课时).ppt_第1页
等差数列课件(第一课时).ppt_第2页
等差数列课件(第一课时).ppt_第3页
等差数列课件(第一课时).ppt_第4页
等差数列课件(第一课时).ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等差数列、复习、数列的定义和通项公式,按一定顺序排列的一列数称为数列。一般写为a1、a2、a3、an、an,甘吉写为an。如果可以用一个公式来表示列an的N段和N的关系,则牙齿公式称为牙齿系列的通项公式。等差数列,一家剧场20排座位,牙齿剧场从第一栏开始每排座位数列:38,40,42,44,46,全国统一鞋号中成人女性化的多种尺寸(表示cm单位的鞋底长度)从大到小排列:20 21。蓝色和白色两种茄子颜色的六边形地砖根据图1-10(课本第10页)的规律,以多种茄子图案拟合,前三种茄子图案中白色地砖的块数依次是多少?从三个茄子实例、第二个项目开始,下一个项目和前一个项目的差异为2。从第二个项目开始

2、,下一个项目和前一个项目的差异是。从第二个项目开始,下一个项目和前一个项目的差异为4。问题1:同学思考。牙齿三个系列的共同特征是什么?6、10、14。等差数列的定义,一般来说,一个数列an,从第二个项目开始,如果与前一个项目的差值为常数,则牙齿数列为等差数列,牙齿常数为等差数列公差。公差通常用字母d表示。定义如下:等差数列an的公差为2,a2-a1=a3-a2=a4-a3=an 1-an=d,以下三个组的等差数列组的公差为2,(1)an=2n-1;(2)an=(-1)n,摘要:认为一个数列是等差数列通用的定义。也就是说,an 1-an=d(nN*)认为数列不是等差数列。是,否,否,练习1,判断

3、以下每个组数列中的哪个不是等差数列,哪个不是。如果是,请写第一个a1和公差D,否则请说明原因。(1) 1,3,5,7,(2) 9,6,3,0,-3 (3)-8,-6,-4,-2,0,如何解决呢?范例,范例,范例,a1=1,d=2,a1=9,d=-3,a1=-8,d=2,a1=3,d=0第一次,一般公式衍生,a2-a1=d,a3-a2=d,a4-a3=d,因此a2=a1d,a3=a2d=(a1d) d所以等差数列总计公式为an=观测:a2、a3和a4都可以用a1和D表示。A1和d的系数的特征是什么?(a2-a1)(a3-a2)(a4-a3)(an-an-1)=(N-1)d an-a1=(N-1)

4、例2判断是否为-401牙齿等差数列5,-9,如果是,第几个,如果不是,请说明原因。分析是为了判断是否是-401牙齿牙齿系列的项目,要求恒等式以确定是否有正整数N牙齿,所以an=-401牙齿。(阿尔伯特爱因斯坦,Northern Exposure(美国电视电视剧),a1=-5,d=-9-(-5)=-4的数列的一般公式为an=-5 (n)等差数列总计公式实际上是a1、an、D、N(有3个独立量)的方程式。2.使用通项公式确定给定的数是否为数列中的项。在确定第一个项的项数时,还必须检查计算项数N牙齿是否为正整数。如果不是正整数,则不是列中的条目。练习2,2。(1)求出等差数列3,7,11的项目4和10。(2)判断102是等差数列记2,9,16。(。如果是,第几次,如果不是,请说明原因。解释:(1)根据问题的意图:a1=3,d=7-3=4,牙齿系列的通用公式为an=a1 (n-1) d=4n-1 a4=44,an 1-an=d(nN *);第二,等差数列通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论