



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第8章 一元一次不等式8.3 一元一次不等式组【教学目标】知识与技能1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式的必要性;过程与方法逐步熟悉数形结合的思想方法,感受类比和化归思想。通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。情感态度与价值观通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。【教学重点】一元一次不等式
2、组的解集与解法。【教学难点】一元一次不等式组解集的理解。【教学过程】一、情境引入(设计说明:创设学生熟悉的问题情境,激发学生的学习兴趣)问题:现有两根木条a和b,a长10 cm,b长3 cm.如果再找一根木条,用这三根木条钉成一个三角形木框,那么对第三根木条的长度有什么要求?由于学生刚学了三角形的三边关系,所以学生容易想到“三角形两边之和大于第三边,两边之差小于第三边”的知识.师生共析:设第三根木条长度为xcm,则由“三角形两边之和大于第三边”得x10-3第三根木条的长度x同时满足以上两个不等式,而实际生活中一个量需要同时满足几个不等式的例子还有很多如何解决这样的问题呢?这节课我们来探究这一类
3、问题的解决方法.(教学说明:用学生身边熟悉的实例引入,一方面引起学生的参与欲,一方面也是知识拓展的需要设计此情境的意图在于:1、复习三角形的三边关系;2、感受同一个x可以有不同的不等式;3、x应该同时符合两个不等式的要求,为引出解集做铺垫)二、新知探究1、类比方程组、方程组解的概念得出一元一次不等式组、一元一次不等式组的解集的概念(1)由于x同时满足 x10-3两个不等式,所以类比方程组的记法可记为:像这样的把两个一元一次不等式合起来,组成一个一元一次不等式组,如也是一元一次不等式组.学生总结,教师补充得出一元一次不等式组的概念:由几个含有相同未知数的一元一次不等式组成的不等式组,叫一元一次不
4、等式组. (2)由得,即x7,所以x的取值范围是:7X13. 类比方程组的解的概念可得:一元一次不等式组中各个不等式解集的公共部分叫这个一元一次不等式组的解集.为了直观形象,我们可以借助数轴求公共部分:(3)求不等式组的解集的过程叫做解不等式.(教学说明:通过学生的分析和解答,让学生根据一元一次不等式的有关概念来类推一元一次不等式组的有关概念。再类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷.)2、例题讲解例:解下列不等式组,并把解集在数轴上表示出来. 由四名学生板演,其他学生在下面练习,最后师生共同规范订正.解:(1)解不等式,得 x
5、5,解不等式,得x-2,在数轴上表示不等式, 的解集为所以这个不等式组的解集是x5.(2)解不等式,得x6,解不等式,得x1,在数轴上表示不等式, 的解集为所以这个不等式组的解集是 1x6.(3)解不等式,得x1,解不等式,得x2,在数轴上表示不等式, 的解集为它们没有公共部分,故此不等式组无解.(4)解不等式,得x-3,解不等式,得x ,在数轴上表示不等式, 的解集为所以这个不等式组的解集是x-3.思考:解一元一次不等式组的步骤是什么?讨论交流后得出,解一元一次不等式组有以下几步:(1) 求出不等式组中每个不等式的解集(2) 借助数轴找出各解集的公共部分(3) 写出不等式组的解集特别注意:没
6、有公共部分称为不等式组无解.(教学说明:既然不等式组的解集是每一个不等式解集的公共部分,因此必须求出每个不等式的解集,然后才能求它们的公共部分。在这里求公共部分是重点,而求解不等式的解集在上一节已做了练习,因此没有必要把求解不等式的解集的过程全部写出来。让学生明白解不等式组的一般步骤,以后做此类题就按步骤进行.)3、总结求公共部分的规律一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设aB).一元一次不等式组数轴表示解集口诀xaxbxb大大取大x xBx小小取小xaxBaXB大小小大取中间x xb无解大大小小无解思考:1、不等式组解法的步骤是什么?2、怎
7、样找到不等式组的解集?3、在数轴上如何找公共部分,谈谈你的看法(教学说明:通过对以上三个问题的思考引导学生回顾整节课的学习历程,巩固所学知识,不断完善自己的认识,形成完整的知识结构.)四、知识梳理1本节主要学习了不等式组的有关概念,会解由两个一元一次不等式组成的一元一次不等式组,并会用数轴(或顺口溜)确定解集.2主要用到的思想方法是类比思想和数形结合思想。3注意的问题:借助数轴求不等式组的解集时,注意“空心圆圈”与“实心圆点”的区别五、随堂练习1.不等式组 x +1 0 的解集是 ( ) 2 - x 0 -x 2 B.- 3 x 2 C. x 2 D.x - 3 的最小整数解是 ( ) x -1 8 - 2xA.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 骨干教师培养青年教师课堂优化措施
- 幼儿园学年幼儿兴趣培养计划
- 住院医师规范化培训计划课程设计
- 2025年煤制合成氨项目合作计划书
- 2025年超二代微通道板项目发展计划
- 2025版文化创意产业借款延期及知识产权保护协议
- 2025版草场承包租赁合同包含草原防火安全责任条款
- 2025版宠物寄养与宠物美容用品代理合同
- 2025版厂房租赁合同(含租赁面积测量)完整模板
- 2025版太阳能热水系统安装与售后服务合同
- 神昏中医护理常规
- 现代家庭教育方法
- 肺炎患者的护理
- 站桩教学课件
- 外研版八年级英语下册期末复习之阅读还原【答案+解析】
- 2025年公务员考试时事政治模拟题附答案详解(模拟题)
- 2025年江苏省事业单位招聘考试教师招聘语文专业知识试卷(中学语文教师)
- 住院医师规范化培训教学病例讨论实施规范
- 2025-2030中国半导体产业链市场运行态势及前景展望与投资风险评估
- 2000-2015年考研英语一真题及详细解析
- 联合国国际货物销售合同公约(中英文对照)
评论
0/150
提交评论