



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2012年数学中考专题复习:勾股定理课题:勾股定理编 号备课时间:课 型复习课主备人学习目标1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。个人修改意见勾股定理的证明在活动中教师要关注:(1) 学生对学过的知识是否掌握得较好;(2) 学生对新知识的探究是否有浓厚的兴趣。勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。学生独立完成小组交流答案重 点难 点1重点:勾股定理的内容及证
2、明。 2难点:勾股定理的证明。教材分析与教法设想、课前准备通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。板书设计勾股定理已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。教 学 过 程导 学 过 程学 习 过 程一、知识回顾目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等
3、。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。bbbbccccaaaabbbbaaccaa你
4、是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?二、目标展示:1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。三、例题展示:例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量
5、关系为:4S+S小正=S大正 4ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证明。例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4abc2右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2化简可证。四、合作研讨,展示交流:五 目标达成1勾股定理的具体内容是: 。2如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 。3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定理。六、反思积累、本节课你有哪些收获?教师提出问题学生思考交流,回答问题一学生阅读目标,使生明确本节课的学习目标作业及预习提纲:教
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人物形象塑造与刻画作文(7篇)
- ××超市薪酬管理细则
- ××中学保安巡逻记录存档制度
- 某商超资源教室规定
- 2025年电工(初级)职业技能鉴定实操试卷:电气设备安全操作案例分析
- 物业智能服务外包协议
- 2025年劳动关系协调员(中级)考试试卷:劳动关系协调法律法规应用与案例分析
- 2025年电梯检验员资格考试试卷:电梯事故案例分析试题
- 广告公司服务范围及费用支付协议
- 2025年阿拉伯语水平测试经典试题模拟试卷
- 申论大学生村官考试试题及答案指导(2025年)
- DB34T 4090-2022 智能交通系统工程检验规范
- 2023年江苏省五年制专转本英语统考真题(试卷+答案)
- 2024年全国预防接种技能竞赛【决赛】考试题库-上(单选题)
- 人力资源和社会保障一体化公共服务平台政务服务管理规范
- 湖南省长沙市雨花区2023-2024学年八年级下学期期末考试历史试题(解析版)
- 预后预测模型的建立
- 22G101三维彩色立体图集
- 广东省韶关市乐昌市2023-2024学年八年级下学期期末数学试卷
- 2023-2024学年山东省济南市高二下学期7月期末学习质量检测数学试题(含答案)
- 《温病学》复习考试题库(带答案)
评论
0/150
提交评论