




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的奇偶性,一、现实生活中的“美”的事例,二、函数图象的“美”,f (x)=x2,f (x)=|x|,问题: 1、对定义域中的每一个x, -x是否也在定义域内? 2、f(x)与f(-x)的值有什么 关系?,函数y=f(x)的图象 关于y轴对称,1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(x)=f(-x),三、偶函数的定义,如果对于函数f(x)的定义域为A。如果对任意的xA,都有 f(-x)= f(x), 那么称函数y=f(x)是偶函数。,四、偶函数的判定,观察下面两个函数填写表格,-3,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,0,x,y,1,2,
2、3,-1,-2,-1,1,2,3,-2,-3,f(x)=x,3,2,1,0,-1,-2,-3,-1,x,-3,-2,0,1,2,3,f(-3)= -3 =,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,f(-x) -f(x),f(x)=x,f(-1)= -1,f(-2)= -2 =,x,-x,表(3),-f(1),=,-f(2),-f(3),=,f(x)=x,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,f(-3)= =-f(3),f(-1)= -1 =-f(1),f(-2)= =-f(2),f(-x) = -f(x),1,3,2,1,0,-2,-3,x
3、,-1,-1,表(4),函数y=f(x)的图象 关于原点对称,1、对定义域中的每一 个x,-x是也在定义 域内; 2、都有f(-x)=-f(x),五、奇函数的定义,如果对于函数f(x)的定义域为A。如果对任意一个xA,都有 f(-x)=- f(x), 那么称函数f(x)是奇函数 。,判定函数奇偶性基本方法: 定义法: 先看定义域是否关于原点对称, 再看f(-x)与f(x)的关系. 图象法: 看图象是否关于原点或y轴对称.,如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.,非奇非偶函数,如:,y=3x+1,y=x2+2x,即是奇函数又是偶函数的函数,如:,y=0,奇函数
4、 偶函数 函数可划分为四类: 既奇又偶函数 非奇非偶函数,说明: 1、根据函数的奇偶性,f(x)=0 xR,如果一个函数是偶函数,则它的图象关于y轴对称。,y=x2,偶函数的图像特征,反过来, 如果一个函数的图象关于y轴对称, 则这个函数为偶函 数。,是偶函数吗?,问题:,0,x,1,2,3,-1,-2,-3,1,2,3,4,5,6,y,不是。,性质:偶函数的定义域关于原点对称,解:,y=x2,例:,性质:偶函数在关于原点对称的区间上单调性相反。,问题:,是奇函数吗?,解:,不是。,性质:奇函数的定义域关于原点对称。,性质:奇函数在关于原点对称的区间上单调性一致,x,y,例:,y=x3,0,例1:判断下列函数的奇偶性:见教学案,(1)解:定义域为R f(-x)=(-x)4=f(x),即f(-x)=f(x),f(x)偶函数,(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x),即f(-x)=-f(x),f(x)奇函数,(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x),即f(-x)=-f(x),f(x)奇函数,(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x),即f(-x)=f(x),f(x)偶函数,小结:1.定义2.判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压力性损伤预防的护理方法
- 歌剧数字化传播-洞察及研究
- 合规性管理创新创业项目商业计划书
- 冀教版小学一年级数学教师指导计划
- 养生社交馆创新创业项目商业计划书
- 呼吸机依赖患者护理安全要点
- 精神卫生伦理问题-洞察及研究
- 粤教版六年级科学下册能力提升计划
- 渠道效果动态监测-洞察及研究
- 新生儿输血规范流程
- 2025至2030年中国神经介入行业市场深度分析及投资前景趋势报告
- 2025年苏教版小学数学一年级下期末练习(附答案)
- 中度贫血患者的护理查房
- 伤口摄影技术课件教学
- 2025年河北省专技人员继续教育公需课(新课程答案六)
- FX5U可编程序控制系统设计技术 课件 任务23 PLC与变频器专用通信协议监控系统设计与调试
- 江苏省淮安市小升初择校分班考押题卷试题-2023-2024学年六年级下册数学 苏教版
- 《对越南的PEST分析》课件
- 地球自转考试题型及答案
- 老年人同居协议书8篇
- 税务系统预防职务犯罪警示教育课演讲稿
评论
0/150
提交评论