九年级数学 5.2 圆的对称性导学案 苏科版_第1页
九年级数学 5.2 圆的对称性导学案 苏科版_第2页
九年级数学 5.2 圆的对称性导学案 苏科版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、苏科版九年级数学上册5.2 圆的对称性(1)导学案学习目标:1 经历利用旋转变换探索圆的中心对称性的过程,理解圆的中心对称性及其相关性质。2 利用圆的旋转不变性研究圆心角、弧、弦之间的关系解决相关问题。3 通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力。学习重点:圆的中心对称性及相关性质. 学习难点:运用圆心角、弧、弦之间的关系解决有关问题.教学过程:一、问题导学:1、把一个图形绕着某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形是 对称图形。2、操作、思考 将两个等圆重叠在一起,使它们重合,固定圆心,任意旋转其中一个圆,你有什么发现?(大胆的写出来)

2、 。3、圆是 对称图形,它的对称中心是 ;=4、如图,已知O、O半径相等,AB、CD分别是O、O的两条弦填空:(1)AOB=COD, , = .DOBA(2)AB=CD, , .O(3)AB= CD, , C 二、探究研学:活动一 小组交流(导学问题2)我们的发现 活动二 操作思考按照课本P.111操作步骤做一做。通过上面的做一做,你能发现圆心角,弦,弧之间有什么数量关系?与同组同学互相交流,说一说你的理由我们的结论是: 活动三 自学探索自学课本P.112,并回答下列问题:(1) 叫做1的弧;(2)一般地,n的圆心角对着 的弧;n的弧对着 的圆心角。结论:圆心角的度数与它所对的弧的度数 。三、

3、合作助学:1、例题解析:例1 O中,直径AB弦CD,AC的度数30,求BOD的度数.例2如图,AB、AC、BC都是O的弦,AOC=BOCABC与BAC相等吗?为什么?变式(1)若改为AOB=2AOC,则AB_2AC(用、填空)(2)若改为AOB=2AOC,则AB_2AC(用、填空)_O_A_B2、小试牛刀:1.(见课本P113,练习1、2)2.O中,半径为5厘米,弦AB的长恰好等于半径,弦AB= 厘米, 弦AB所对的圆心角为_,弦AB所对的弧的度数为_.3.如图,AB是O的直径,C、D是 BE 上的三等分点,AOE60,则COE_.3、交流小结:我的收获和体会是:四、分层拓学:A类1.如图1,

4、在O中,AC=BD ,AOB=30,则COD=_2.如图2,AB、CE是O的直径COD=60且 AD =BC,那么与AOE相等的角有_,与AOC相等的角有_ (1) (2) (3)3一条弦把圆分成1:3两部分,则弦所对的圆心角为_4如图3,AB为O直径BC=BD,A=25,则BOD=_5如果两条弦相等,那么( ) A这两条弦所对的弧相等 B这两条弦所对的圆心角相等 C圆心到这两条弦的距离相等 D以上答案都不对6在O中,圆心角AOB=90,点O到弦AB的距离为4,则O的直径的长为 ( ) A4 B8 C24 D16B类7如图4,在半径为2cm的圆O内有长为2cm的弦AB,则此弦所对的圆心角AOB为() A60 B90 C120 D1508如图5,AB是O的直径,CD为弦,CDAB于E,则下列结论中不一定成立的是 ( )ACOE=DOE BCE=DE COE=BE D.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论