




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面向量应用举例,2.5.1平面几何中的向量方法,平面几何中的向量方法,向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。,问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,猜想:,1.长方形对角线的长度与两条邻边长度之间有何关系?
2、,2.类比猜想,平行四边形有相似关系吗?,例1、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。 求证:,解:设 ,则,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;常设基底向量或建立向量坐标。 (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,简述:形到向量 向量的运算 向量和数到形,例2 如图,平行四边形 ABCD中,点E、F分别是AD 、 DC边的中点,BE 、 BF分别与AC交于R 、 T两点,你能发现AR 、 RT 、TC之间的关系吗?,猜想: AR=RT=TC,又因为 共线, 所以设,因为 所以,解:设 则,由于 与 共线,故设,线,,故AT=RT=TC,练习1、证明直径所对的圆周角是直角,分析:要证ACB=90,只须证向 量 ,即 。,解:设 则 , 由此可得:,即 ,得 ACB=90,思考:能否用向量 坐标形式证明?,简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市车库抵押担保合同模板
- 老师上课介绍课件
- 财务分析财务控制模型合同
- DJ音乐节特邀嘉宾聘用合同
- 企业文化标志设计及推广实施合同
- 商务会议会务培训与指导合同
- 村级三员考试题库及答案
- 美术老师课件介绍
- 防雷安全管理制度(责任制)
- 危废库日常检查记录表
- 2023-2024学年福建省厦门市高二下学期期末质量检测数学试题(解析版)
- 中医药艾灸课件视频教学
- 2025至2030年中国液压行业市场动态分析及发展趋向研判报告
- 2025年上海市中考语文真题试卷含答案
- 2025年高考数学全国二卷试题真题解读及答案详解
- 广东省广州市海珠区2024-2025学年八年级下学期期末 历史自编练习试卷(含解析)
- 高校“十五五”发展规划编制应着重考虑的关键任务
- 护理病历质控标准
- 2025年小学五年级数学期末冲刺卷:数学基础知识巩固
- 电子烟工艺原理及生产流程培训
- T/CQAP 3014-2024研究者发起的抗肿瘤体细胞临床研究细胞制剂制备和质量控制规范
评论
0/150
提交评论