


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、福建省泉州市泉港三川中学八年级数学上册12.2 实数与数轴教案 华东师大版教学目标 1、了解实数的意义,能对实数进行分类。 2、了解数轴上的点与实数一一对应,能用数轴上的点表示无理数。 3、会估计两个实数的大小。教学过程一、创设问题情境,导入实数的概念 问题l 用什么方法求?其结果如何? 问题2 你能利用平方关系验算所得结果吗? 问题3 验证的结果并不是2,而是接近于2,这说明了什么问题? 问题4 如果用计算机计算,结果如何呢? 让学生阅读P15页计算结果,并指出;在数学上已经证明,没有一个有理数的平方等于2,也就是说不是有理数有兴趣的同学可以看一看第18页的阅读材料 问题5 那么,是怎样的数
2、呢? 1回顾有理数的概念 (1)有理数包括_和_ (2)请你随意写出三个分数,将它化成小数,看一看结果。 (3)由此你可以得到什么结论? (任何一个分数写成小数的形式,必定是有限小数或者无限循环小数) 2无理数的概念 与有理数进行比较,计算的结果是无限不循环小数,所以不是有理数。 提问:还有没有其他的数不是有理数?为什么? 无限不循环小数叫做无理数例如、都是无理数 有理数与无理数统称为实数 二、试一试 问题1 按照计算器显示的结果,你能想像出在数轴上的位置吗? 问题2 你能在数轴上找到表示的点吗? 请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形? 如果把四个等腰
3、直角形拼成一个大的正方形,其面积为多少?其边长为多少?这就是说,边长为1的正方形的对角线长是利用这个事实,我们容易画出表示的点,如图所示三、反思提高 问题1 如果将所有有理数都标到数轴上,那么数轴被填满了吗? 问题2 如果再将所有无理数都标到数轴上,那么数轴被填满了吗? 让学生充分思考交流后,引导学生归结为:如果将所有有理数都标到数轴上,数轴未被填满;如果再将所有无理数都标到数轴上,那么数轴被填满。数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,即实数与数轴上的点一一对应。四、范例例1试估计与的大小关系。说明:正实数的大小比较和运算,通常可取它们
4、的近似值来进行。 提问:若将本题改为:试估计()与的大小关系,如何解答? 让学生动手解答,并请一位同学板演,教师讲评五、课堂练习 P11练习1(1), 3六、小结 1什么叫做无理数? 2什么叫做实数? 3有理数和数轴上的点一一对应吗?为什么? 4无理数和敷轴上的点一一对应吗?为什么?5实数与数轴上的点一一对应吗?为什么?七、作业习题12.2中的1教后反思: 实数与数轴(2)教学目标 1了解有理敷的相反数和绝对值等概念、运算法则以及运算律在实数范围内仍然适用 2能利用运算法则进行简单四则运算 教学过程一、创设问题情境,导入新知 1复习提问 (1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分
5、配律。 (2)用字母表示有理数的加法交换律和结合律 (3)平方差公式?完全平方公式? (4)有理数a的相反数是什么?不为0的数a的倒数是什么?有理数a的绝对值等于什么?在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较,运算法则及运算律仍然适用。二、范例例1计算:23(结果精确到0.01) 分析:对于实数的运算,通常可以取它们的近似值来进行。提问:用什么手段取它们的近似值?例2计算:(1)( 1)(+1)2三、课堂练习 P11页练习l(2)、2,让四位同学板演,教师根据学生的具体解答情况作出正确判断,并分析发生错误的原因四、小结 由学生完成如下小结: 1在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算2实数的运算法则 abb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险服务采购合同终止及保险责任协议
- 城市地下停车场租赁及改造合作协议
- 纸质规划方案文案
- 养生馆升级装修方案
- 煤矿修旧利废实施方案
- 管道鉴定方案
- 企业商标管理实务课件
- 智能电规划升级方案
- 舆论回应面试题及答案
- 餐饮业食品安全风险评估与防控合同范本
- 贵州省贵阳市2023-2024学年七年级下学期期末考试生物试题(无答案)
- 广东省湛江市2023-2024学年高二下学期7月期末考试化学试题
- 江苏省盐城市2023-2024学年高一下学期6月期末 数学试题【含答案】
- 黑龙江省哈尔滨市2024年七年级下学期生物期末试卷附答案
- DZ∕T 0376-2021 智能矿山建设规范
- 小学教师绩效考核及绩效工资发放实施办法
- 山东省邹城市一中2024年高一数学第二学期期末检测试题含解析
- 供应商审核自查表+自评回复模版BYD
- 脑外伤后综合征个案护理
- 北师大版数学四年级下册简易方程练习300题及答案
- 建设工程施工阶段安全监理
评论
0/150
提交评论