八年级数学上册《2.6勾股定理的逆定理》教案 浙教版_第1页
八年级数学上册《2.6勾股定理的逆定理》教案 浙教版_第2页
八年级数学上册《2.6勾股定理的逆定理》教案 浙教版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浙江省温州市瓯海区八年级数学上册2.6勾股定理的逆定理教案 浙教版相关以往知识:_教学内容和方法:_个性化教学思路及改进建议:_【教学目标】知识目标:1、掌握勾股定理的逆定理的内容及应用. 2、会应用勾股定理的逆定理来判断直角三角形能力目标:通过探索、讨论,培养学生的逻辑思维能力。情感目标:通过创设情景,了解我国古代数学家的伟大成就,激发学生热爱祖国的思想和求知欲 【教学重点与难点】教学重点:直角三角形的判定教学难点:教学的难点是根据勾股定理的逆定理判断已知三边的三角形是否为直角三角形.【教学方法】以学生为主体通过实验的方法,研究性学习.【教学用具】三角板,圆规,小黑板等.【教学过程】(一)

2、复习回顾,导入新课首先回顾上节课内容:勾股定理。勾股定理体现了直角三角形的三边关系:直角三角形中两条直角边的平方和等于斜边的平方。这里老师有一个感兴趣的问题有待于解决,不知大家有没有想过:把这个定理反过来说:如果一个三角形有两边平方和等于第三边的平方,这个三角形一定是直角三角形吗?大家一起来分组做个实验,第一组的同学在本子上画一个边长为3cm,4cm,5cm的三角形,第二组的同学每人画一个边长为5cm,12cm,13cm的三角形,第三组的同学每人画一个边长为8cm,15cm,17cm的三角形,第四组的同学拿着三角板或量角器分别到一,二,三组来抽查,看看他们画出的三角形大概是什么形状呢?能不能得

3、出一个公认的结论呢?(二) 实验讨论,新课教学通过实验大家得出结论了吗?(当第四组的同学量时,其他同学也看到了并得出自己的结论)现在大家讨论半分钟,每组派一个代表说出你们的结论,看看结论一致吗?哪一组概括得更准确?1归纳结论:勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。_2 结论的应用:知道这个结论有什么作用吗?(有些同学是知道的)显然如果给出一个三角形的三边长,我们可通过计算两边的平方和,第三边的平方,通过判断他们是否相等来看这个三角形是不是直角三角形。如 以6,8,10为三边的三角形是直角三角形吗?解:以6,8,10为边的三角形是直角三角形。那么

4、做这种题目时有没有规律,是不是盲目计算呢?如 三边为5,6,7的三角形是不是直角三角形?分析:我们先用中的哪一个与第三边的平方比较呢?有的同学已经想好了,总是用较短的两边的平方和,与最长的那个边的平方比较。我们来试几道题3 例题例3 根据下列条件,分别判断a,b,c为边的三角形是不是直角三角形(1)a=7,b=24,c=25; (2) a=,b=1,c=解:(1)以7,24,25为边的三角形是直角三角形。例4 已知的三边分别为a,b,c且a=,b=2mn,c=(mn,m,n是正整数),是直角三角形吗?说明理由。分析:先来判断a,b,c三边哪条最长,可以代m,n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。解:是直角三角形注意事项:(1) 书写时千万别写成是直角三角形。这里你弄错了勾股定理的逆定理的条件和结论。(2) 分清何时利用勾股定理,何时利用其逆定理4 巩固练习教科书43页,课内练习1,作业题1各选做一些,课内练习2等_瞬间灵感或困惑:_ABC课内练习2分析:先求BC2+AC2=+AB2=+我们由已知+=+显然BC2+AC2=AB2(三)课堂小结:1 勾股定理逆定理。2 勾股定理逆定理的作用:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论