


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学号:20155031201学年论文(本科)学 院 数学与统计学院 专 业 数学与应用数学 年 级 2015级 姓 名 高传印 论文题目 幂级数及其应用 指导教师 周学勇 职称 讲 师 成 绩 2016年12月05日9目 录摘 要1关键词1abstract 1keywords1前 言11.幂级数的定义22.幂级数的收敛区间和收敛半径23.幂级数的运算43.1幂级数在求导数中的应用43.2幂级数在求极限中的应用53.3幂级数在计算级数和中的应用53.4幂级数在求微分方程中的应用6总结7参考文献7幂级数及其应用学生姓名:高传印 学号:20155031201数学与统计学院 数学与应用数学专业指导老师
2、:周学勇 职称:讲师摘 要:本文主要介绍了幂级数的定义、收敛区间、运算及其应用。关键词:幂级数;收敛区间;应用 power series and its applicationabstract:this paper mainly introduces the definition,convergence interval,operation and application of the power series. key words:power series;convergence interval;application 前言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错
3、级数,而正项级数在各种数项级数中是最基本的,同时也是十分重要的一类级数。级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级
4、数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 1.幂级数的定义在引进幂级数定义之前,先介绍一下函数项级数的概念.设是定义在数集e上的一个函数列,表达式称为定义在e上的函数项级数,简记为或.定 义 由幂函数序列 所产生的函数项级数 (1)称为幂级数,是一类最简单的函数项级数.从某
5、种意义上,它可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别是在应用它表示函数方面.下面将着重讨论,即 (2)的情形,只要把(2)中的换成,就得到(1).2.幂级数的收敛区间和收敛半径定理2.1(阿贝尔定理) 若幂级数(2)在,则处收敛,则对满足不等式的任何,幂级数(2)收敛,而且绝对收敛;若幂级数(2)在处发散,则对满足不等式的任何,幂级数(2)发散.证:设级数收敛,从而数列收敛于零且有界,即存在某整数m,使得 另一方面对任意一个满足不等式的,设,则有.由于级数收敛,故幂级数(2)当时绝对收敛.现在证明定理的第二部分.设幂级数(2)在处发散,如果存在某一个,满足不等式,使级
6、数收敛.则知道级数(2)在处绝对收敛,与假设矛盾,故一切不满足不等式的,幂级数(2)都发散.由此定理知道:幂级数(2)的收敛域是以原点为中心的区间.若以2r表示区间长度,则称r为幂级数的收敛半径.也是使得幂级数(2)收敛的那些收敛点的绝对值的上确界.所以当r=0时,幂级数(2)仅在处收敛;当时,幂级数(2)在上收敛;当时,幂级数(2)在上收敛;对一切满足不等式的,幂级数(2)都发散,在处,幂级数(2)可能熟练也可能发散.我们称为幂级数(2)的收敛区间.定理2.2 对于幂级数(2),若,则当(i)时,幂级数(2)的收敛半径;(ii)时,幂级数(2)的收敛半径;(iii)时,幂级数(2)的收敛半径
7、r=0.证:对于幂级数(2),由于,根据级数的根式判别法,当时,收敛;当时发散.于是当时,由得幂级数(2)的收敛半径.当时,对任何皆有,所以.当时,除的任何皆有,所以r=0.例1 求幂级数的收敛区间和半径.解:由于 ,所以它的收敛半径r=1,即收敛区间为;当时,有,由于级数在时也收敛,可得其收敛域为. 例2 求幂级数的收敛半径和区间.解: ,即收敛半径为r=1,收敛区间为; 当时,由于均发散,故该级数的收敛区域为.逻辑推理:求幂级数的收敛半径和收敛域,可直接用定理求幂级数的收敛半径r,然后确定幂级数在时数项级数的敛散性,即可的收敛区域.当幂级数缺项时,可直接用正项级数的等值判别法判定收敛区域.
8、 3.幂级数的运算幂级数是高等数学中最基础的知识,它的应用非常广泛.巧妙地利用函数幂级数的展开式和性质能够把复杂的性质表达成最简单的形式,使得解题思路清晰.3.1幂级数在求导数中的应用求导数是高等数学中最基础的知识,有些求导问题,幂级数法也是其中之一.例:求的n阶导数.解: 3.2幂级数在求极限中的应用求极限幂级数法是一种有效的方法例:求解:设故3.3幂级数在计算级数和中的应用利用幂级数的性质:幂级数在收敛区间内可逐项求导与逐项求积分可计算幂级数的和.例:求幂级数的和函数.解:因为,所以r=0,收敛域为.令则所以即() 解得 故有 .3.4幂级数在求微分方程中的应用在求微分方程解的问题上,有时候借助幂级数的形式,也不失为一种好方法.例:求的解解:设方程的解为 则将 原方程的通解为 ()总结 幂级数应用的方面虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍本文归纳总结幂级数应用方法,比较这些方法的不同特点,总结出一些典型的幂级数,根据不同的题目特点分析、判断选择适宜的方法进行判断参考文献:1 李光敏,焦艳芳. 数学分析习题精解m北京:中国水利水电出版
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东省机场管理集团有限公司校园招聘考试题库及答案解析
- 经典名方半夏泻心汤基准样品研究及其治疗消化道肿瘤作用机制预测分析
- 2025年忻州市税务系统遴选面试真题附带题目详解含答案
- 2025年会计职称考试《初级会计实务》错题复盘强化复习模拟试题含答案
- 2025年辽宁省国家电网人员招聘考试题库及答案
- 《三亚落日》教学课件
- 2025年盘锦职业技术学院单招职业适应性考试题库参考答案
- 2025年教育政策法规考试真题试题及答案
- 2025年贵阳市税务系统遴选面试真题附带题目详解含答案
- 公安考试真题及答案
- 2024年湖南城建职业技术学院辅导员考试真题
- 国外警用枪支管理制度
- 平台广告投放管理制度
- 2025宿迁泽达职业技术学院辅导员考试试题及答案
- 高血压利尿药
- 《环境艺术与创新》课件
- 保健按摩技能培训课件
- 阻燃风筒产品介绍
- 延长石油招聘笔试题库2025
- 2025汽车零部件区域代理合同汽车零部件区域代理合同范本
- 2025年粤东西北教师全员轮训心得体会2篇
评论
0/150
提交评论