MVDR方法在信号频率估计领域的应用.ppt_第1页
MVDR方法在信号频率估计领域的应用.ppt_第2页
MVDR方法在信号频率估计领域的应用.ppt_第3页
MVDR方法在信号频率估计领域的应用.ppt_第4页
MVDR方法在信号频率估计领域的应用.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Application of MVDR method in signal frequency estimation,MVDR方法在信号频率估计领域的应用,汇报人:,任课教师:,小组成员:,1,2,3,4,5,目 录,课题背景,MVDR频率估计算法仿真,仿真结果分析,思考题解答,MVDR算法基本原理,3,课 题 背 景,课题背景,MVDR是什么 MVDR(minimum variance distortionless response)是最小方差无失真响应算法的简称,是一种有别于经典功率谱估计和参数模型估计的另一类信号频谱估计方法,最早于1969年由Capon提出。,MVDR的优缺点 优点:在于

2、低阵元和低快拍数的情况下,仍然能保证较高的分辨率。 缺点:当阵元数下降和分辨率要求提高时,它的解相干性能受到严重限制,甚至无法实现。(MMVDR),MVDR的应用 日常:被用于无线定位技术中,可以为移动通信网中的用户提供位置信息。 军事:被用于水声无线通信技术中,可以实现水面舰艇和潜艇之间、潜艇和潜艇之间的通信及水中武器的遥测遥控。,5,MVDR算法基本原理,MVDR滤波器原理:,图1 M抽头的FIR滤波器,如图1所示,有M个权系数的横向滤波器(transversal filter),滤波器的输入为随机过程x(n),输出为 定义输入信号向量和权向量分别为,信号y(n)的平均功率可以表示为 其中

3、矩阵 为向量输入信号向量x(n)的M维自相关矩阵,MVDR滤波器原理:,MVDR算法的原理:,(1)约束 ,这是为了使 无失真地通过滤波器。 (2)输出平均功率P= 最小,达到抑制其他频率信号和噪声的目的。,MVDR算法的原理:,实现最小方差无失真相应的基本思路为通过调节权向量,使噪声和来自非期望信号频率的所有干扰所贡献的功率最小,同时保持期望信号频率增益恒定。故滤波器权向量 应满足:,更一般的情况,实际工程中常采用N个观测样本值得到相关矩阵 。对于无失真通过系统的信号频率为 的复正弦信号,其最优权向量和滤波器最小输出功率分别为,在 内改变 ,画出 曲线。当 与输入信号的频率不相等时,信号和噪

4、声都被滤波器抑制;当 与输入信号的频率相等时,该信号可以无失真的通过,因此曲线呈现出一个峰值。,MVDR频率估计算法仿真,11,MVDR仿真实例:,假设随机过程u(n)为 其中,v(n)是零初值、方差为1 的白噪声, 和 是相互独立并在 上服从均匀分布的随机相位。请使用MVDR方法进行信号频率估计的仿真实验,画出频率估计谱线,并给出正弦信号频率的估计值。 (要求:信号样本数取1000,估计的自相关矩阵为8阶),算法流程框图,我们分别取滤波器抽头系数个数为M=4及M=8,并在 范围内均匀选取2048个频率点,此时的MVDR频率估计谱线以及正弦信号频率的估计值如图2、图3所示。,图2 M=4时的频

5、率估计谱线,图3 M=8时的频率估计谱线,我们分别取滤波器抽头系数个数为M=16及M=32,并在 范围内均匀选取2048个频率点,此时的MVDR频率估计谱线以及正弦信号频率的估计值如图4、图5所示。,图4 M=16时的频率估计谱线,图5 M=32时的频率估计谱线,MVDR仿真结果分析:,表1 实验结果,从实验结果图中可以看出随着抽头数M的增加,MVDR算法对频谱的分辨率得到了提高。但通过对表1 的数据进行分析发现,当抽头数M小于16时,抽头数的增加使频率估计的精度得到了提高;但当抽头数M大于16时,抽头数的增加对频率估计的精度没有明显的提升效果。,17,思考题解答,思考题:,1.给出DFT的定

6、义和主要性质,定义: 离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。 设x(n)为M点有限长序列,则可定义x(n)的N点离散傅里叶变换为,性质: (1)线性 (2)圆周移位性 (3)圆周共轭对称性 共轭对称序列: 共轭反对称序列: (4)对偶性 把离散谱序列当成时域序列进行DFT,结果是原时域序列反褶的N倍;如果原序列具有偶对称性,则DFT结果是原时域序列的N倍,性质: (5)离散圆卷积 时域离散圆卷积 频域离散圆卷积 (6)帕斯瓦尔定理,2.抽样过程为什么要先进行滤波,此滤波器应逼近什么样的指标?,因为里面的谐波含量太高,会造成控制系统的误动作,所以,需要先经过一个低通滤波器进行过滤,将尽可能多的主要谐波过滤掉,保证整个工控系统控制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论