




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最速下降法,最速下降法,也称为梯度下降法,是由法国著名数学家Cauchy在1847年提出的。 最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。 最速下降法是用负梯度方向为搜索方向,算法非常简单,并且通常对凸解析函数也有良好的收敛性。,最速下降法的基本思想,从任意一点xk出发,沿该点负梯度方向pk=-f(xk)进行一维搜索,设f(xk+ kpk)=min f(xk+ pk) ( 0),令xk+1= xk+ kpk为f(x)新的近似最优解。 再从新点xk+1出发,沿该点的负梯度方向pk+1=-f(xk+1)进行
2、一维搜索,进一步求出新的近似最优解xk+2。 如此迭代,直到某点的梯度为零向量或梯度的范数小于事先给定的精度为止。,给定x0,0,k=0,计算pk=-f(xk),| f(xk)| ,f(xk+ kpk)=min f(xk+ pk) ( 0),xk+1= xk+ kpk,k=k+1,停止,打印xk,Y,N,算法,例. 用最速下降法求函数f (x1, x2)2x12+x22 的极小点,取x0=1,1T , =0.1。,解 由题意得,由于,故进行第一次迭代,从x0=(1,1)T出发进行一维搜索,即构造,得,从而得,故进行第二次迭代运算:,令,从x1=(-1/9,4/9)T出发进行一维搜索,即构造,得
3、,从而得,令,故进行第三次迭代运算:,从x2=(2/27,2/27)T出发进行一维搜索,即构造,得,从而得,令,停止迭代,故最优解为,最速下降法的搜索路径呈直角锯齿形,设xk=(xk1 , xk2 .xkn),pk=(pk1 , pk2 .pkn),则 令( )= f(xk+ pk) = f(xk1 + pk1, xk2 + pk2 ,., xkn + pkn),是一元函数f(xk+ pk)的极值点,,f(xk + kpk)Tpk=0,即(pk+1)Tpk=0。也就是说,有目标函数在一维搜索产生的新点xk+1= xk+ kpk处的梯度与产生该点时所用的搜索方向是正交的。,改进后的算法,精度0,自然数N=2,k=0,Step1:,计算,Step2:,Step3:,如果,,则转Step5;否则进行一维搜索,,令,若k=N,且k/3-k/3=0.则转Step4,否则转Step2.,Step4:,计算,,进行一维搜索,令,,转Step2,Step5:,停止,输出,小结,1、优点: 计算简单,需记忆的容量小;对初始点要求低,稳定性高;远离极小点时收敛快,常作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地质勘查活动管理办法
- 机电安装发票管理办法
- 梅山镇村干部管理办法
- 医疗健康基金管理办法
- 数字时代电影本体论研究的新趋势
- 杭州物业应急管理办法
- 中职新生场域转换研究:背景、认识与学习期待的实证调查
- 情绪智力理论与实践应用综述
- 奶牛饲养管理策略与实践指南
- 数字化时代的企业管理模式与创新路径研究
- 亿航智能介绍
- 考研题土力学
- 双向拉伸聚酯薄膜生产知识
- 绿山墙的安妮-练习答案(完整版)资料
- 2022年小学美术教师进城(选调)招聘考试模拟试题(共五套)
- 贵阳小升初分班全真模拟测A卷
- GB/T 77-2007内六角平端紧定螺钉
- 中华人民共和国安全生产法
- 九年一贯制学校教育教学管理制度汇编
- 《C++语言基础》全套课件(完整版)
- 钢筋混凝土框架结构设计讲义
评论
0/150
提交评论