



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、江苏省常州市西夏墅中学高中数学 1.3.2 极大值与极小值教案 新人教A版选修2-2教学目标:1理解极大值、极小值的概念2能够运用判别极大值、极小值的方法来求函数的极值3掌握求可导函数的极值的步骤教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤教学过程:一、问题情境1问题情境函数的导数与函数的单调性的关系是什么?设函数yf(x)在某个区间内有导数,如果在这个区间内y0,那么函数yf(x)为在这个区间内的增函数;如果在这个区间内y0,那么函数yf(x)为在这个区间内的减函数2探究活动用导数求函数单调区间的步骤是什么?(1)函数f(x)的导数 (2)令0解不等式,得x的范围就是递
2、增区间(3)令0解不等式,得x的范围就是递减区间二、建构数学1极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值f(x0),x0是极大值点2极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值f(x0),x0是极小值点3极大值与极小值统称为极值在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值,请注意以下几点:(1)极值是一个局部的概念定义,极值只是某个点的函数值与它附近点的
3、函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是惟一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4判别f(x0)是极大、极小值的方法若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5求
4、可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数(2)求方程0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值三、数学运用例1求f(x)xx2的极值例2求yx34x的极值求极值的具体步骤:第一,求导数;第二,令0,求方程的根;第三,列表,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右都是正,或者左右都是负,那么f(x)在这根处无极值练习 1求下列函数的极值(1);(2)探索若寻找可导函数极值点,可否只由f(x)0求得即可?如x0是否为函数的极值点?四、回顾小结函数的极大、极小值的定义以及判别方法,求可导函数f(x)的极值的三个步骤,还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号函数的不可导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供应链管理数据治理组织架构和岗位职责
- 五年级上学期班主任育人工作具体计划
- 家政服务职业健康保证体系与措施
- 九年级上学期语文课程教学计划
- 八年级年级组社会实践调研计划
- 2025年教师国际教育读书计划
- 医疗机构劳务派遣服务方案及流程
- 学校施工期间师生交通秩序安全防范措施
- 北师大版五年级数学上册家校共育教学计划
- 招标代理部门工作职责详解
- jsp花溪食堂美食点评系统springmvc论文
- 期末测试卷(试题)-2023-2024学年苏教版五年级数学下册
- 压力容器相关标准
- (正式版)SHT 3045-2024 石油化工管式炉热效率设计计算方法
- 《养老护理员》-课件:协助卧床老年人使用便器排便
- 滚动轴承常见故障及其原因分析
- 绿色建筑保险产品
- 调节阀培训课件
- 2024年衢州巨化集团有限公司招聘笔试参考题库含答案解析
- 甘肃省2023年夏季普通高中学业水平合格考历史试题(解析版)
- 临床输血质量控制培训课件
评论
0/150
提交评论