




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最短路径问题,如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?,两点之间,线段最短, , 两点在一条直线异侧,已知:如图,A,B在直线L的两侧,在 L上求一点P,使得PA+PB最小。,P,连接AB,线段AB与直线L的交点P ,就是所求。,为什么这样做就能得到最短距离呢?,如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?,P,所以泵站建在点P可使输气管线最短,应用,问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一
2、条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全程最短?,探索新知,这是一个实际问题,你打算首先做什么?,将A,B 两地抽象为两个点,将河l 抽象为一条直 线,探索新知,你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?,(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;,探索新知,现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB
3、 的和最小(如图),作法: (1)作点B 关于直线l 的对称 点B; (2)连接AB,与直线l 相交 于点C 则点C 即为所求,探索新知,如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,证明:如图,在直线l 上任取一点C(与点C 不 重合),连接AC,BC,BC 由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC 在ABC中, ABAC+BC, AC +BCAC+BC 即AC +BC 最短,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,探索新知,回顾前
4、面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?,问题:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短,练习,已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.,B,C,D,E,分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小,已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.,分别作点A关于OM,ON的对称点A,A;连接A,A,分别交OM,ON于点B、点C,则点B、点C
5、即为所求,3.某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C关于直线 OA 的 对称点点D, 2. 作点C关于直线 OB 的对称点点E, 3.连接DE分别交直线OA.OB于点M.N, 则CM+MN+CN最短,A,O,B,. .,E,D,M,N,G,H,如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。 作法:1.作点C关于直线 OA 的 对称点点
6、F, 2. 作点D关于直线 OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+GH+DH最短,F,A,O,B,D , C,E,G,H,A/,B/,P,Q,证明:在直线OA 上另外任取一点G,连接 点F,点C关于直线OA对称,点G.M在OA上,GF=GC,FM=CM, 同理HD=HE,ND=NE, CM+MN+ND=FM+MN+NE=FE, CG+GH+HD=FG+GH+HE, 在四边形EFGH中, FG+GH+HEFE(两点之间,线段最短), 即CG+GH+HDCM+MN+ND即CM+MN+ND最短,如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。),你能证明一下如果在不同于MN的位置造桥M/N/,距离是怎样的,能证明我们的做法AM+MN+NB的和是最短距离吗?试一下。,证明:取不同于,M,N的另外两点M/,N/ 由于M/N/=MN=AA/; 由平移的性质可知:AM=A/N,AM/=A/N/ 又根据“两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老人健康管理培训课件
- 村文书考试题及答案
- 村干部竞选考试题及答案
- 药品销售知识培训课件
- 安全技术操作规程清单
- 安全周例会工作汇报范文
- 安全生产风险评估规范
- 企业消防安全知识
- 文化墙培训课件图片
- 美业推广课件文案
- 深圳市失业人员停止领取失业保险待遇申请表空表
- 《生理学》神经系统课件
- 傲鹏ERP应付会计操作培训课件
- 催收投诉防控预警处理流程(含投诉预警报备台账)
- 硬笔书法:幼小衔接识字写字教学课件
- 公开招聘校长后备人选理论考试题库
- 机械优化设计_经典实例PPT课件
- 新人教版八年级物理(下册) 第十一章 功和机械能 第十一章 功与机械能复习课
- 东方航空无成人陪伴儿童乘机申请书
- 火针操作规范
- 智慧工厂解决方案—灯塔工厂引领制造业数字化转型-白皮书
评论
0/150
提交评论