楞次定律的内容及其理解_第1页
楞次定律的内容及其理解_第2页
楞次定律的内容及其理解_第3页
楞次定律的内容及其理解_第4页
楞次定律的内容及其理解_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.楞次定律的内容及其理解1、内容:感应电流的磁场,总要阻碍引起感应电流的磁通量的变化2、四步理解楞次定律1明白谁阻碍谁感应电流的磁通量阻碍产生产感应电流的磁通量的变化。2弄清阻碍什么阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。3熟悉如何阻碍原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。4知道阻碍的结果阻碍并不是阻止,结果是增加的还增加,减少的还减少。3、理解楞次定律的另一种表述 1表述内容:感应电流总是反抗产生它的那个原因。 2表现形式有四种:阻碍原磁通量的变化;增反减同阻碍物体间的相对运动,有的人把它称为“来拒

2、去留”;增缩减扩,磁通量增大,面积有收缩的趋势,磁通量减小,面积有扩大的趋势d阻碍原电流的变化(自感)。二、正确区分楞次定律与右手定则的关系导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来三、楞次定律的应用1、应用楞次定律的步骤a明确原来的磁场方向b判断穿过(闭合)电路的磁通量是增加还

3、是减少c根据楞次定律确定感应电流(感应电动势)的方向d用安培定则(右手螺旋定则)来确定感应电流(感应电动势)的方向2、应用拓展(1)、增反减同。当原磁通量增加时,感应电流的磁场方向就与原磁场方向相反,当原磁通量减少时,感应电流的磁场方向与原磁场方相同,例1、两圆环a、b置于同一水平面上,其中a为均匀带电绝缘环,b为导体环,当a以如图所示的方向绕中心转动的角速度发生变化时,b中产生如图所示方向的感应电流则(a)a可能带正电且转速减小(b)a可能带正电且转速增大(c)a可能带负电且转速减小(d)a可能带负电且转速增大解:若a带正电,则a环中有顺时针方向的电流,则原磁场垂直a环向里,而感应电流的磁场

4、方向垂直b环向外,由增反减同,说明原磁场在增加,转速在增大;若a环带负电,则则a环中有逆时针方向的电流,则原磁场垂直a环向外,而感应电流的磁场方向垂直b环向外,说明原磁场在减小,原电流在减小,转速减小,所以b、c正确。精品.ns图2(2)来拒去留:感应电流阻碍相对运动,原磁场来时,感应电流的磁场要拒之,原磁场离去时,感应电流的磁场要留之,从运动的效果看,可表述为敌进我退,敌退我追例2.如图2所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的n极朝下但未插入线圈内部。当磁铁向上运动时:a.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引b.线圈中感应电流的方向与图中箭头方向相同,磁铁与线

5、圈相互排斥c.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引d.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥解:由增反减同,n向下运动,原磁通量增加,感应电流磁场方向与原磁场方向相反,由安培定则知感应电流方向与图中箭头方向相同,由来拒去留,知磁铁与线圈相互排斥,故b正确。(3)增缩减扩:回路原磁通量增大时,闭合回路的面积有收缩的趋势,原磁通量减少时,闭合回路面积有扩大的趋势图3abt1ti0t2例3、如图3所示,两个闭合圆形线圈a、b的圆心重合,放在同一水平面内,线圈b中通以图中所示的交变电流,设t0时电流沿逆时针方向(图中箭头所示)对于线圈a,在时间内,下列说法中正

6、确的是:a有顺时针方向的电流,且有扩张的趋势b有顺时针方向的电流,且有收缩的趋势c有逆时针方向的电流,且有扩张的趋势d有逆时针方向的电流,且有收缩的趋势解:时间内,b中的电流为顺时针增大,由增反减同,a中的感应电流要与b中的电流相反,a中的电流为逆时针,由增缩减扩,a的面积有收缩的趋势;d正确。图4例4如图所示,ef、gh为两水平放置相互平衡的金属导轨,ab、cd为搁在导轨上的两金属棒,与导轨接触良好且无摩擦当一条形磁铁向下靠近导轨时,关于两金属棒的运动情况的描述正确的是a如果下端是n极,两棒向外运动;如果下端是s极,两棒相向靠近b如果下端是s极,两棒向外运动;如果下端是n极,两棒相向靠近c不

7、管下端是何极,两棒均向外互相远离d不管下端是何极,两棒均互相靠近解:条形磁体向下运动,回路的磁通量在增加,回路的面积有收缩的趋势,所以两棒相互靠近,与下端是哪个极无关,d正确。(4)阻碍原电流变化:线圈是原电流增加,在线圈中自感电流的方向与原电流方向相反,反之,则相同例5如图所示,l1,l2为两盏规格相同的小灯泡,线圈的直流电阻与小灯泡的电阻相等,安培表电阻不计。当开关s闭合时,安培表中指示某一读数,下列说法中正确的是( ) a、开关s闭合时,l1,l2都立即变亮al1l2s b、开关s闭合时,l2立即变亮,l1逐渐变亮 c、开关s断开瞬间,安培表有可能烧坏 d、开关s断开时,l2立即熄灭,l

8、1逐渐熄灭 精品.解:开关s闭合,线圈中原电流在增大,感应电流阻碍其增大,所以l1立即变亮,l2逐渐变亮,;开关s断开时,线圈中电流在减小,感应电流阻碍其减小,l1逐渐熄灭,l2立即熄灭。d正确。 楞次定律的三种表述方式:表述一:感应电流的磁场总是阻碍引起感应电流的磁通量的变化;表述二:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动;表述三:感应电流的方向,总是阻碍引起它的原电流的变化;判断感应电流方向的步骤:1确定原磁场方向;2判断穿过闭合电路磁通量的变化情况;3根据楞次定律判断感应电流的磁场方向;4根据安培定则判断感应电流的方向。示例: 如图所示,光滑金属导轨的一部分处在匀强磁场

9、中,当导体棒ab向右匀速运动切割磁感线时,判断ab中感应电流方向.1.回路中原磁场方向垂直纸面向里.2.通过回路的磁通量在减小.3.感应电流的磁场与原磁场方向相同,为垂直纸面向里.4 .ab中感应电流的方向为向上.楞次定律表明感应电流的后果总与引起感应电流的原因相对抗!为什么对呀? 解答:楞次定律的内容是:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。感应电流的磁场要阻碍原磁通量的变化,这并不等于说,由于感应电流的磁场的阻碍作用,原磁场不变化了,或者改变了变化的方向,恰恰相反,原磁场该是怎样变化,还是怎样变化。譬如原磁场是增强的,尽管有感应电流的磁场的阻碍作用,原磁场仍是逐渐增强的,感应

10、电流的磁场的阻碍作用,只是使得原磁场的增强变得缓慢些罢了,但终归还是要增强的,而且要达到原来所要达到的增强程度,而绝不能理解成起阻止作用,而应理解为“反抗”(对抗)或“补偿”,即当原磁场引起的磁通量增加时,感应电流的磁场方向将与原磁场方向相反,以“反抗”原磁通量的增加;当原磁场引起的磁通量减少时,感应电流的磁场方向将与原磁场的磁场方向相同,以“补偿”原磁通量的减少。可见“阻碍”的方式是感应电流产生的磁场与原磁场方向相同或相反,即感应电流的后果总与引起感应电流的原因相对抗。“阻碍”并不是“阻止”,如果磁通量变化被阻止了,则感应电流也就不能产生了。因此“楞次定律表明感应电流的后果总与引起感应电流的

11、原因相对抗!”这句话是正确的。精品.对于楞次定律的内容:感应电流的方向即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这句话怎样理解?感应电流的方向和磁通量的变化该怎样判断?感应电流的方向即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,当磁通量增加时,产生的感应电流会阻碍磁通量的增加,也就时说感应电流产生的磁场方向于原来的磁场方向相反。当磁通量减小时,产生的感应电流会阻碍磁通量的减小,也就时说感应电流产生的磁场方向于原来的磁场方向相同。磁通量的变化要看通过线圈的磁感线数目,当磁感线数增加时,磁通量增加。感应电流的方向根据左手定则进行判断。怎样判断感应电怎样判断感应电流的方向呢?解答:一

12、般可以用楞次定律来进行判断,楞次定律的内容为:感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。应用楞次定律判断感应电流的方向的具体步骤为:(1)明确原磁通量的方向(2)判断磁通量的增减情况(3)确定感应电流的磁场的方向(4)利用楞次定律的“增反减同”的原理来推断感应电流的方向。注意:阻碍不是阻止! 当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量减小时,感应电流的磁场方向与原磁场方向相同。 只是延缓了磁通量变化的快慢! (另外:对于导体切割磁感线产生感应电流的方向用右手定则来判断较为简便。)右手定则:伸开右手,使大拇指跟其余四个手指垂直,并跟手掌在一个平面

13、内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么其余四个手指所指的方向就是感应电流的方向。复习要点1、掌握磁通量概念及其意义,能够正确判断磁通量的变化情况。2、了解电磁感应现象,掌握发生电磁感应现象,产生感应电动势、产生感应电流的条件。3、掌握右手定则和楞次定律,并能灵活运用于感应电流方向的判断。精品.4、掌握法拉第电磁感应定律,明确和e=lvb两种表述形式的适用条件和适用范围,并能运用法拉第电磁感应定律熟练地计算电磁感应现象中所产生的感应电动势。5、对导体棒旋转切割磁感线时所产生的感应电动势能够灵活地运用法拉第电磁感应定律做出正确的计算。6、了解自感现象,掌握自感现象

14、中的基本特征。二、难点剖析 1、关于电磁感应的几个基本问题(1)电磁感应现象所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。(2)发生电磁感应现象的两种基本方式及其理论解释导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激志感应电动势。这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。如图-1所示,当导体棒ab在磁场b中做切割磁感线运动时,棒中的自由电荷将随棒一起在磁

15、场中运动而受到洛仑兹力fb的作用于是受到fb作用的自由电荷将向棒端迁移而使棒两端分别积累起正、负电荷,形成所谓感应电动势。图-3 图-1 图-2磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。如图-2所示,在滑动变阴器滑动头p向右滑动的过程中,用绝缘线悬挂着的线圈a中的自由电荷沿特定方向移动,形成所谓感应电流。精品.(3)发生电磁感应现象,产生感应电流的条件:发生电磁感应现象,产生感应电流的条件通常有如下两种表述。当穿过线圈的磁通

16、量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。如线圈闭合,则线圈子里就将产生感应电流。当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。应指出的是:闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。所以上述两个条件从根本上还应归结磁通量的变化。像图-3所示的矩形线圈abcd在匀强磁场b中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。2、几种定则、定律的适用范围定则、定律适用的基本物理现象安培定则判断

17、电流(运动电荷)的磁场方向左手定则判断磁场对电流、运动电荷的作用力方向右手定则判断闭合电路的一部分做切割磁感线的运动时产生的感应电流方向楞次定律判断闭合电路的一部分做切割磁感线运动时,或者是穿过闭合电路的磁通量发生变化时产生的感应电流的方向3、关于楞次定律(1)楞次定律的内容感应电流的磁场总阻碍引起感应电流的原磁场的磁通量的变化。(2)对楞次定律的正确理解 第一,楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式;第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍原磁场磁通量的变化;第三,正因阻碍是的是“变化”,所以,当原

18、磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。(3)楞次定律的应用步骤明确引起感应电流的原磁场在被感应的回路上的方向;精品.搞清原磁场穿过被感应的回路中的磁通量增减情况;根据楞次定律确定感应电流的磁场的方向;运用安培定则判断出感生电流的方向。(4)楞次定律的灵活运用在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难,对于这样的顺题,在运用楞次定律时,一般可以灵活处理,考虑到

19、原磁场的磁通量变化又是由相对运动而引起的,于是可以从“感应电流的磁场阻碍相对运动”出发来判断。4、对公式e = lvb的研究(1)公式的推导图-4如图-4所示,取长度为1的导体棒ab ,强度垂直于磁场方向放在磁感强度为b的匀强磁场中,当棒以速度v做垂直切割磁感线运动时,棒中自由电子就将受到洛仑兹力fb=evb的作用,这将使的a、b两端分别积累起正、负电荷而在棒中形成电场,于是自由电子除受fb作用外又将受到电场力fc=ee,开始a、b两端积累的电荷少,电场弱,fc小,棒两端积累的电荷继续增加,直至电场力与洛仑兹力平衡:fc=fb。由于fb移动电荷,使得做切割磁感线运动的ab棒形成一个感应电源,在

20、其外电路开路的状态下,电动势(感应电动势)与路端电压相等,即e=uab=el,于是由,便可得e = lvb(2)与公式e =的比较。当把法拉第电磁感应定律e =中的理解为切割导体在时间内“扫过的磁通量”时,就可用e =直接推导出。因此公式e = lvb实际上可以理解为法拉第电磁感应定律在导体切割磁感线而发生电磁感应现象这种特殊情况下的推论。一般地说,公式e = lvb只能用于计算导体切割磁感线时产生的感应电动势。公式e =则可以用来计算所有电磁感应现象中产生的感应电动势;但公式e =只能用于计算在精品.时间内的平均感应电动势,而公式e = lvb则既可以用来计算某段时间内的平均感应电动势,又可

21、以用来计算某个时刻的瞬时感应电动势,只要把公式中的v分别以某段时间内的平均速度或某个时刻的瞬时速度代入即可。(3)适用条件除了磁场必须是匀强的外,磁感强度b、切割速度v、导体棒长度l三者中任意两个都应垂直的,即这三个关系必须是同时成立的。如有不垂直的情况,应通过正交分解取其垂直分量代入。(4)公式中l的意义公式e = lvb中l的意义应理解为导体的有效切割长度。所谓导体的有效切割长度,指的是切割导体两端点的连线在同时垂直于v和b的方向上的投影的长度。(5)公式中v的意义对于公式e = lvb中的v,首先应理解为导体与磁场间的相对速度,所以即使导体不动因则磁场运动,也能使导体切割磁感线而产生感应

22、电动势;其次,还应注意到v应该是垂直切割速度;另外,还应注意到在“旋转切割”这类问题中,导体棒上各部分的切割速度不同,此时的v则应理解为导体棒上各部分切割速度的平均值,在数值上一般等于旋转导体棒中点的切割速度。5、自感现象中的一个重要特征自感现象作为一种特殊的电磁感应现象,是由于流过导体自身的电流的变化而引起的,由楞次定律知,产生的感应电动热(自感电动势)又必将阻碍着电流的这一变化,正是由于主种阻碍,使得自感现象具备一个重要的特征:自感现象中引起自感电动势产生的电流变化,一般只能是逐渐变化而不可能发生突变。精品.三、典型题例例1 如图5所示,两个同心圆形线圈a、b在同一平面内,其半径大小关系为

23、rarb,条形磁铁穿过圆心并与圆面垂直,则穿过两线圈的磁通量间的大小关系为( )a、 b、 c、 d、条件不足,无法判断图-5 图-6分析:常会有同学对此题作出这样的错误分析:,而sab =123。所以应选a。例2 如图-7所示,边长为l、总电阻为r的正方形线圈abcd处在磁感强度为b的匀强磁场中,线圈平面与磁场方向垂直,当线圈以速度v在垂直于磁场方向的平面内估匀速直线运动时,线圈中感应电流的强度i=_,线圈回路中总的感应电动势e = _,a、c两点间电热差u=_。分析:只要导体做切割磁感线的相对运动,导体中就将形成感应电动势,该导体相当于一个感应电源;只要闭合回路的磁通量不变,无论回路中有几

24、部分导体切割磁感线,无论回路程中有几个感应电源,回路程中的感应电流都为零。图-7解答:尽管线圈的ac和bd两边都做切割磁感线运动,但由于穿过线圈的磁通量不变,因此线圈中无感应电流,i=0;尽管线圈的ac和bd两边都切割磁感线运动,形成感应电动势均为eac =ebd =lvb的感应电源,但由于对整个线圈回路来说,eac 和ebd是反向串联的,因此线圈回路中的总的感应电动势为e = eac ebd =0。由于线圈运动时,ac和bd两边相当于外电路开路的两个并联的感应电源,因此a、c两点间的电势差就等于两个并联感应电源的等次电动势,为u= e并=lvb。例3:在电磁感应现象中,下列说法中正确的是( )a、感应电流的磁场总是跟原来的磁场方向相反b、闭合线框放在变化的磁场中一定能产生感应电流c、闭合线杠放在匀强磁场中做切割磁感线运动,一定能产生感应电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论