版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最新 料推荐一、知识要点梳理知识点一:方程和方程的解1. 方程:含有 _的 _叫方程注意: a. 必须是等式b.必须含有未知数。易错点:(1). 方程式等式, 但等式不一定是方程; ( 2). 方程中的未知数可以用 x 表示,也可以用其他字母表示; ( 3) . 方程中可以含多个未知数。考法:判断是不是方程:例:下列式子: (1).8-7=1+0(2).1、 一元一次方程:一元一次方程的标准形式是:ax+b=0( 其中 x 是未知数, a,b 是已知数,且a0) 。要点诠释:一元一次方程须满足下列三个条件:( 1) 只含有一个未知数;( 2) 未知数的次数是 1 次;( 3) 整式方程2、方程
2、的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如果,那么; (c 为一个数或一个式子) 。等式的性质2:等式两边乘同一个数,或除以同一个不为0 的数,结果仍相等。如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0 的数,分数的值不变。即:(其中 m0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:=1.6 ,将其化为:=1.6 。方程的右边没有变化,这要与“去分母”区别开
3、。2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形具 体 方 法变 形 根 据注 意 事 项步骤去分方程两边都乘以1 不能漏乘不含分母的项;各个分母的最小公倍等式性质 22 分数线起到括号作用,去掉分母母数后,如果分子是多项式,则要加括号1最新 料推荐去括先去小括号, 再去乘法分配律、1 分配律应满足分配到每一项号中括号,最后去大括号去括号法则2 注意符号,特别是去掉括号把含有未知数的1 移项要变号;移项移到方程的一边, 不等式性质 12 一般把含有未知数的项移到方程项含有未知数的项移到左边,其余项移到右边另一边合并把方程中的同类项同分 别 合 并 , 化 成合 并 同 类 项合并同
4、类项时,把同类项的系数类“ axb ” 的 形 式法则相加,字母与字母的指数不变项( a0 )未知方程两边同除以数的未知数的系数a ,得系数等式性质 2分子、分母不能颠倒b化成x“ 1”a要点诠释:理解方程 ax=b 在不同条件下解的各种情况,并能进行简单应用:a0 时,方程有唯一解; a=0, b=0 时,方程有无数个解;a=0,b0 时,方程无解。牛刀小试例 1、解方程(1) y- y 12y 225例 2、由两个方程的解相同求方程中子母的值已知方程 x104x 的解与方程 5x2m2的解相同,求m的值 .例 3 、解方程知识与绝对值知识综合题型解方程: | 2x 1 |732最新 料推荐
5、二、经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:2x 5 1;8 7 1;x y;x y x2;3x y 6;5x 3y4z 0;8; x 0。其中方程的个数是()A、 5B、 6C、 7D、 8举一反三: 变式 1 判断下列方程是否是一元一次方程:( 1) -2x 2+3=x (2) 3x-1=2y( 3)x+=2 ( 4) 2x2-1=1-2(2x-x2) 变式 2 已知: (a-3)(2a+5)x+(a-3)y+60 是一元一次方程,求a 的值。 变式 3 ( 2011 重庆江津)已知3 是关于 x 的方程 2x a=1 的解 , 则 a 的值是 ( )A 5B 5C 7
6、D 2类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。1巧凑整数解方程:2、举一反三: 变式 解方程:2x 52巧去括号解方程:4、举一反三: 变式 解方程:3最新 料推荐4运用拆项法解方程:5、5巧去分母解方程:6、举一反三: 变式 ( 2011 山东滨州) 依据下列解方程的过程, 请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。解:原方程可变形为(_)去分母,得3( 3x+5) =2(2
7、x-1). (_)去括号,得9x+15=4x-2.( _ )(_),得 9x-4x=-15-2. (_)合并,得5x=-17. (合并同类项 )(_ ) , 得 x=.( _)6巧组合解方程:7、思路点拨 :按常规解法将方程两边同乘72 化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数 3,左边的第二项和右边的第一项的分母有公约数 4,移项局部通分化简,可简化解题过程。7巧解含有绝对值的方程:8、 |x 2| 3 0思路点拨: 解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为
8、两个一元一次方程分别解之,即若|x| m,则 xm或 x m;也可以根据绝对值的几何意义进行去括号,如解法二。举一反三:【变式 1】( 2011 福建泉州)已知方程,那么方程的解是_.4最新 料推荐; 变式 2 5| x|-16 3| x|-4 变式 38利用整体思想解方程:9、思路点拨: 因为含有的项均在“”中,所以我们可以将作为一个整体,先求出整体的值,进而再求的值。参考答案例 1:解: 是方程的是,共六个,所以选B总结升华 :根据定义逐个进行判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,体现了对概念的理解与应用能力。举一反三1. 解析 :判断是否为一元一次方程需要对原
9、方程进行化简后再作判断。答案:( 1)( 2)( 3)不是,( 4)是2. 解析 :分两种情况:( 1)只含字母y,则有 (a-3)(2a+5) 0 且 a- 30( 2)只含字母 x,则有 a-3 0 且(a- 3)(2a+5) 0 不可能综上, a 的值为。3. 答案: B例 2.解:移项,得。合并同类项,得2x 1。系数化为1,得 x。举一反三解:原方程可变形为 2x 5整理,得8x 18 (2 15x) 2x 5,去括号,得8x 182 15x 2x 55最新 料推荐移项,得8x 15x 2x 518 2合并同类项,得9x 21系数化为1,得 x。例 4 解:去括号,得去小括号,得去分
10、母,得 (3x 5) 8 8去括号、移项、合并同类项,得3x 21两边同除以3,得 x7原方程的解为x7举一反三解:依次移项、去分母、去大括号,得依次移项、去分母、去中括号,得依次移项、去分母、去小括号,得, x 48例 5解: 原方程逆用分数加减法法则,得移项、合并同类项,得。系数化为1,得。例 6 解:原方程化为去分母,得100x (13 20x) 7去括号、移项、合并同类项,得120x 20两边同除以120,得 x6最新 料推荐原方程的解为总结升华 :应用分数性质时要和等式性质相区别。可以化为同分母的,先化为同分母,再去分母较简便。举一反三【答案】解:原方程可变形为(_ 分式的基本性质_
11、)去分母,得3( 3x+5 )=2(2x-1). (_等式性质 2_)去括号,得9x+15=4x-2.(去括号法则或乘法分配律_)(_ 移项 _), 得 9x-4x=-15-2. (等式性质1_)合并,得 5x=-17. (合并同类项 )(_ _系数化为1_) , 得 x=.(等式性质2)例 7 解:移项通分,得化简,得去分母,得8x 144 9x 99。移项、合并,得x 45。例 8 解法一: 移项,得 |x 2| 3当 x20 时,原方程可化为 x2 3,解得 x 5当 x 2 0 时,原方程可化为(x 2) 3,解得 x 1。所以方程 |x 2| 3 0 的解有两个:x 5 或 x 1。
12、解法二: 移项,得 |x 2| 3。因为绝对值等于3 的数有两个: 3 和 3,所以 x 2 3 或 x2 3。分别解这两个一元一次方程,得解为x 5 或 x 1。举一反三1.【答案】2.解: 5| x|-3| x| 16-42| x| 12| x| 66x3.解: |3 x-1| 83x-1 83x183x 9 或 3x -7x 3 或7最新 料推荐例 9 解:移项通分,得:化简,得:移项,系数化1 得:总结升华 :解一元一次方程有一般程序化的步骤, 我们在解一元一次方程时, 既要学会按部就班 ( 严格按步骤 ) 地解方程, 又要能随机应变 ( 灵活打乱步骤 ) 解方程。 对于一般解题步骤与
13、解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。三、课堂练习一、选择题3;(2) 0.3x=1;(3)x2其中1、已知下列方程: (1) x-2=5x-1;(4) x-4x=3;(5) x=0;(6) x+2y=0.x2一元一次方程的个数是()A 2B 3C4D 52、下列四组变形中,正确的是()A 由 5x+7=0, 得 5x= -7B由 2x-3=0, 得 2x-3+3=0x1D 由 5x=7,得 x=35C 由 =2,得 x=363、一个水池有甲、乙两个水龙头,单独开甲水龙头2 小时可把空池灌满;单独开乙水龙头3 小时可把空池灌满,若同时开放两个水龙头,灌满空
14、池需()A6 小时B 5小时C2 小时D3 小时564、下列方程中,是由方程7x-8=x+3变形而得到的是()A7x=x+5B7x+5=xC6x=11D-8+3=-6x5、下列方程的变形中,是移项的是()55A 由 3=x,得x=3B 由 6x=3+5x ,得 6x=5x+3228最新 料推荐 x6 ; x2y0 其中一元一次方程的个数是()A2B3C4D513 已知关于x的方程a x5 (2 a1)x的解是 x1 ,则a的值是()、A-5B-6C-7D814、方程3x 52 x移项后,正确的是()1A 3x2x51B 3x2x15C 3x2x15D 3x2x1515、2 x43x 1,去分母
15、得()方程 232A 22(2 x4)33( x1)B 123(2x4)183(x1)C12(2 x4)18( x1)D 6 2(2 x4)9 ( x 1)16、 甲、乙两人骑自行车同时从相距65 km 的两地相向而行, 2 小时相遇,若甲比乙每小时多骑25 km,则乙的时速是()A125 kmB15 kmC175 kmD20 km17、 某商店卖出两件衣服,每件 60 元,其中一件赚25,另一件赔25,那么这两件衣服售出后商店是()A不赚不赔B 赚 8 元C亏 8 元D 赚 15 元二、填空题:1 、圆的周长为4,半径为x, 列出方程为。2、已知方程( m-2)xm 1.+5=9 是关于 x
16、 的一元一次方程,则 m =3、已知代数式x+2y 的值是 3,则代数式2x+4y+1 的值是。4、 3a 2 m 3 b 4 与 2a 6 m b 4 是同类项,则m =.5、若 xy +( y+1) 2 =0, 则 x-y=.6、某商品的进价为250 元,为了减少库存,决定每件商品按标价打8 折销售,结果每件商品仍获利10 元,那么原来标价为。7、当 x=时, 82x 的值是 0.159最新 料推荐10最新 料推荐三、一元一次方程应用题(找出等量关系)一 、列一元一次方程解应用题的一般步骤( 1)审题:弄清题意 (2)找出等量关系:找出能够表示本题含义的相等关系( 3)设出未知数,列出方程
17、:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程 ( 4)解方程:解所列的方程,求出未知数的值( 5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案1、数字问题要搞清楚数的表示方法:一个三位数的百位数字为 a,十位数字是 b,个位数字为 c(其中 a、b、c 均为整数,且 1a9, 0 b9, 0 c9)则这个三位数表示为: 100a+10b+c。例 1、 若三个连续的偶数和为18,求这三个数。例 2、 一个两位数,个位上的数是十位上的数的2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系
18、:原两位数 +36=对调后新两位数例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少 49,求原数。分析:然后抓住数字间或新数、原数之间的关系找等量关系列方程2、日历中的规律:横行相邻两数相差_竖行相邻两数相差 _。例 1、如果今天是星期三,那么一年(365 天)以后的今天是星期 _例 2、在日历表中,用一个正方形任意圈出2x2 个数,则它们的和一定能被_整除。A 3B 4C 5D 6例 3、如果某一年的 5 月份中,有 5 个星期五,且它们的日期之和为 80,那么这个月的 4 号是星期几?11最新 料推荐3、
19、等 形 常用等量关系 :形状面 了,周 没 ;原料体 成品体 。例 1、用直径 4cm的 , 造一个重 0.62kg 的零件毛坯,如果 种 每立方厘米重 7.8g , 截 多 ?例 2. 用直径 为 90mm的 圆 柱形 玻璃 杯(已 装 满 水)向一个由 底面 积为125 125mm2 内高 81mm的 方体 盒倒水 ,玻璃杯中的水的高度下降多少mm?( 果保留整数314. )4、 和、差、倍、分 :倍数关系:通 关 “是几倍,增加几倍,增加到几倍,增加百分之几,增 率”来体 。多少关系:通 关 “多、少、和、差、不足、剩余”来体 。( 1) 力 配 : 要搞清人数的 化 .例 1. 某厂一
20、 有 64 人,二 有 56 人。 因工作需要,要求第一 人数是第二 人数的一半。 需从第一 多少人到第二 ?例 2甲、乙两 各有工人若干,如果从乙 100人到甲 ,那么甲 的人数是乙 剩余人数的 6倍;如果从甲 100人到乙 , 两 的人数相等,求原来甲乙 的人数。( 2)配套 :例 1、某 有 28名工人生 螺栓和螺母,每人每小 平均能生 螺栓 12个或螺母 18个, 如何分配生 螺栓和螺母的工人, 才能使螺栓和螺母正好配套 (一个螺栓配两个螺母)12最新 料推荐例 2. 机械厂加工车间有 85 名工人,平均每人每天加工大齿轮 16 个或小齿轮 10 个,已知 2 个大齿轮与 3 个小齿轮
21、配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?分析:列表法。每人每天人数数量大齿轮16 个x 人16x小齿轮10 个85 x人10 85 x等量关系:小齿轮数量的2 倍大齿轮数量的3 倍解:设分别安排 x 名、 85x 名工人加工大、小齿轮3(16x)210(85x)48x170020x68x1700x2585x60人答:略.( 3)分配问题:例 1. 学校分配学生住宿,如果每室住 8人,还少 12个床位,如果每室住 9人,则空出两个房间。求房间的个数和学生的人数。例 2. 三个正整数的比为 1:2:4,它们的和是 84,那么这三个数中最大的数是几?(比例分
22、配问题 常用等量关系:各部分之和总量。 )( 4)年龄问题:例 1、甲比乙大 15 岁,5 年前甲的年龄是乙的年龄的两倍, 乙现在的年龄是多少岁?例 2、小华的爸爸现在的年龄比小华大 25 岁, 8 年后小华爸爸的年龄是小华的 3 倍多 5 岁,求小华现在的年龄。13最新 料推荐5、工程问题工程问题中的三个量及其关系为:工作总量 =工作效率工作时间经常在题目中未给出工作总量时,设工作总量为单位 1。例 1. 一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作3 天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?分析设工程总量为单位 1,等量关系为:
23、甲完成工作量 +乙完成工作量 =工作总量。11解:设乙还需 x 天完成全部工程, 设工作总量为单位1,由题意得, ( 15+12)x3+12=1,.例 2、在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长6500米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成 220 米,乙队比甲队晚一天开工, 乙队开工几天后两队完成全部任务?6、 打折销售问题( 1)销售问题中常出现的量有:进价、售价、标价、利润等( 2)基本关系式:利润售价进价;售价=标价折数;利润率利润/ 进价。由 可得 出 利润标 价 折数 进 价 。 由 可得出 利 润率
24、。 市场经济问题商品利润(1)商品利润商品售价商品成本价(2)商品利润率 100% 商品成本价(3)商品销售额商品销售价商品销售量(4)商品的销售利润(销售价成本价)销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8 折出售,14最新 料推荐即按原标价的 80%出售例 1、一件衣服标价是 200 元,现打 7 折销售。问:买这件衣服需要多少钱?若已知这件衣服的成本 (进价)是 115 元,那么商家卖出这件衣赚了多少钱?利润是多少?例 2、 某商场售货员同时卖出两件上衣, 每件都以 135 元售出,若按成本计算,其中一件赢利 25%,另一件亏损 25%,问这次售货员是赔了还是赚
25、了?7、行程问题。(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)要掌握行程中的基本关系:路程速度时间。相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程 =全路程追及问题(同向而行),这类问题的等量关系是:同时不同地:甲的时间 =乙的时间 甲走的路程 - 乙走的路程 =原来甲、乙相距的路程同地不同时;甲的时间 =乙的时间 - 时间差甲的路程 =乙的路程解此类题的关键是抓住甲、 乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。例 1.甲、乙两站相距480 公里,一列慢车从甲站开出,每
26、小时行90 公里,一列快车从乙站开出,每小时行140 公里。( 1)慢车先开出 1 小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?15最新 料推荐( 2)两车同时开出,相背而行多少小时后两车相距600 公里?( 3)两车同时开出, 慢车在快车后面同向而行, 多少小时后快车与慢车相距 600公里?( 4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?( 5)慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。( 1)分析:相遇问题,画图表示为:甲乙等量关系是:慢
27、车走的路程+快车走的路程 =480 公里。解:设快车开出 x 小时后两车相遇,由题意得, 140x+90(x+1)=480 解这个方程, 230x=39016 x=1 23答:略 .( 2)分析:相背而行,画图表示为:600甲乙等量关系是:两车所走的路程和+480 公里 =600 公里。解:设 x 小时后两车相距600 公里,由题意得, (140+90)x+480=600 解这个方程, 230x=12012 x= 23答:略 .( 3)分析:等量关系为:快车所走路程慢车所走路程+480 公里 =600 公里。解:设x 小时后两车相距600 公里,由题意得,(140 90)x+480=60050
28、x=12016最新 料推荐 x=2.4答:略 .( 4)分析:追及问题,画图表示为:甲乙等量关系为:快车的路程=慢车走的路程 +480 公里。解:设 x 小时后快车追上慢车。由题意得, 140x=90x+480解这个方程, 50x=480 x=9.6答:略 .( 5)分析:追及问题,等量关系为:快车的路程 =慢车走的路程 +480 公里。解:设快车开出 x 小时后追上慢车。由题意得, 140x=90(x+1)+48050x=570解得, x=11.4 答:略 .环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和 =一圈的路程;同地同向而行的等量关系是两人所走的路程差 =一圈的路
29、程。航行问题: 顺水(风)速度静水(风)速度水流(风)速度逆水(风)速度静水(风)速度水流(风)速度例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要 3小时,求两码头的之间的距离?抓住两码头间距离不变, 水流速和船速(静不速)不变的特点考虑相等关系1、A、B 两地相距 150 千米。一辆汽车以每小时 50 千米的速度从 A 地出发,另一辆汽车以每小时 40 千米的速度从 B 地出发,两车同时出发,相向而行,问经过几小时,两车相距 30 千米?2、甲、乙两人练习 100 米赛跑,甲每秒跑 7 米,乙每秒跑 6.5 米,如果甲让乙先跑 1 秒,那么甲经过几秒
30、可以追上乙?17最新 料推荐3、一架飞机飞行在两个城市之间,顺风要 2 小时 45 分,逆风要 3 小时,已知风速是 20 千米小时,则两城市间的距离为多少?4、一列火车以每分钟 1 千米的速度通过一座长 400 米的桥,用了半分钟,则火车本身的长度为多少米?5、火车用 26 秒的时间通过一个长 256 米的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 秒的时间通过了长 96 米的隧道,求列车的长度。8、银行储蓄问题。 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的 20%付利息税 利息 =本金利率期数本息和 =本金 +利息利息税 =利息税率( 20%)每个期数内的利息利润 100% 利息本金利率期数本金注意利率有日利率、月利率和年利率,年利率月利率12日利率 365。本息和本金 _本金 _ _(1_ _)本金(不考虑利息税)本息和本金 _本金 _ _( 1_)(考虑利息税)例 9. 某同学把 250 元钱存入银行,整存整取,存期为半年。半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)18最新 料推荐分析:等量关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机房消防改造施工方案
- 布袋除尘器吊装拆卸施工方案
- 城市轨道交通与城市旅游协调发展方案
- 博物馆防水施工方案
- 施工电梯安装作业指导方案
- 人行道铺装拆除施工方案
- 2026年广东女子职业技术学院单招职业适应性考试备考题库及答案解析
- 2026年江苏食品药品职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年湘中幼儿师范高等专科学校单招职业适应性测试备考试题及答案解析
- 期末考试班会演讲稿5篇
- (北师大2024版)生物八上全册知识点(默写版+背诵版)
- 陌陌聊天话术技巧
- 精神科常见药物不良反应
- 2025年小学必读书目《窗边的小豆豆》阅读测试试题及答案
- 铝合金车身轻量化技术-洞察与解读
- 2025江苏盐城市水务集团有限公司招聘专业人员34人笔试题库历年考点版附带答案详解
- 学堂在线 雨课堂 学堂云 实验室安全密码 章节测试答案
- 华为培训心得体会
- 大一期末c语言考试真题及答案
- 自发性气胸个案护理汇报
- 法务升职述职报告
评论
0/150
提交评论