《复合函数求导》PPT课件.ppt_第1页
《复合函数求导》PPT课件.ppt_第2页
《复合函数求导》PPT课件.ppt_第3页
《复合函数求导》PPT课件.ppt_第4页
《复合函数求导》PPT课件.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复合函数的导数 一、复习与引入: 1. 函数的导数的定义与几何意义. 2.常见函数的导数公式. 3.导数的四则运算法则. 4.例如求函数y=(3x-2)2的导数,那么我们可以把平方式 展开,利用导数的四则运算法则求导.然后能否用其它 的办法求导呢? 又如我们知道函数y=1/x2的导数是 =-2/x3,那么函数 y=1/(3x-2)2的导数又是什么呢? 为了解决上面的问题,我们需要学习新的导数的运算 法则,这就是复合函数的导数. 二、新课复合函数的导数: 1.复合函数的概念: 对于函数y=f (x),令u= (x),若y=f(u)是中间变量 u的函数, u= (x)是自变量x的函数,则称y=f (x) 是自变量x的复合函数. 2.复合函数的导数: 设函数 在点x处有导数 ,函数y=f(u)在 点x的对应点u处有导数 ,则复合函数 在点x处也有导数,且 或记 如:求函数y=(3x-2)2的导数,我们就可以有,令y=u2,u =3x-2,则 从而 .结果与我 们利用导数的四则运算法则求得的结果完全一致. 在书写时不要把 写成 ,两者是不完全 一样的,前者表示对自变量x的求导,而后者是对中间变 量 的求导. 3.复合函数的求导法则: 复合函数对自变量的导数,等于已知函数对中间 变量的导数,乘以中间变量对自变量的导数. 法则可以推广到两个以上的中间变量. 求复合函数的导数,关键在于分清函数的复合关 系,合理选定中间变量,明确求导过程中每次是哪个变 量对哪个变量求导,一般地,如果所设中间变量可直接 求导,就不必再选中间变量. 复合函数的求导法则与导数的四则运算法则要有 机的结合和综合的运用.要通过求一些初等函数的导 数,逐步掌握复合函数的求导法则. 三、例题选讲: 例1:求下列函数的导数: 解:设y=u5,u=2x+1,则: 解:设y=u-4,u=1-3x,则: 解:设y=u-4,u=1+v2,v=sinx,则: 说明:在对法则的运用熟练后,就不必再写中间步骤. 例2:求下列函数的导数:(1)y=(2x3-x+1/x)4; 解: (3)y=tan3x; 解: (2) 解: (4) 解: (5):y=sin2(2x+/3) 法一 : 法二: 练习1:求下列函数的导数: 答案 : 例3:如果圆的半径以2cm/s的等速度增加,求圆半径R= 10cm时,圆面积增加的速度. 解:由已知知:圆半径R=R(t),且 = 2cm/s. 又圆面积S=R2,所以 =40(cm)2/s. 故圆面积增加的速度为40(cm)2/s. 例4:在曲线 上求一点,使通过该点的切线平行于 x轴,并求此切线的方程. 解:设所求点为P(x0,y0).则由导数的几何意义知: 切线斜率 把x0=0代入曲线方程得:y0=1. 所以点P的坐标为(0,1),切线方程为y-1=0. 例5:求证双曲线C1:x2-y2=5与椭圆C2:4x2+9y2=72在交 点处的切线互相垂直. 证:由于曲线的图形关于坐标轴对称,故只需证明其中一 个交点处的切线互相垂直即可. 联立两曲线方程解得第一象限的交点为P(3,2),不妨 证明过P点的两条切线互相垂直. 由于点P在第一象限,故由x2-y2=5得 同理由4x2+9y2=72得 因为k1k2=-1,所以两条切线互相垂直.从而命题成立. 例6:设f(x)可导,求下列函数的导数: (1)f(x2);(2)f( );(3)f(sin2x)+f(cos2x) 解: 说明:对于抽象函数的求导,一方面要从其形式是把握其 结构特征,另一方面要充分运用复合关系的求导法 则. 我们曾经利用导数的定义证明过这样的一个结论: “可导的偶函数的导函数为奇函数;可导的奇函数的导函 数为偶函数”.现在我们利用复合函数的导数重新加以证 明: 证:当f(x)为可导的偶函数时,则f(-x)=f(x).两边同时对x 求导得: ,故 为 奇函数. 同理可证另一个命题. 我们还可以证明类似的一个结论:可导的周期函数 的导函数也是周期函数. 证:设f(x)为可导的周期函数,T为其一个周期,则对定义 域内的每一个x,都有f(x+T)=f(x). 两边同时对x求导得: 即 也是以T为周期的周期函数. 例7:求函数 的导数. 说明:这是分段函数的求导问题,先根据各段的函数表达 式,求出在各可导(开)区间的函数的导数,然后再用 定义来讨论分段点的可导性. 解:当x1时, . 又 ,故f(x)在x=1处连续. 而 从而f(x)在x=1处不可导. 四、小结: 利用复合函数的求导法则来求导数时,选择中间变 量是复合函数求导的关键.必须正确分析复合函数是由 哪些基本函数经过怎样的顺序复合而成的,分清其间的 复合关系.要善于把一部分量、式子暂时当作一个整体, 这个暂时的整体,就是中间变量.求导时需要记住中间变 量,注意逐层求导,不遗漏,而其中特别要注意中间变量 的系数,求导后,要把中间变量转换成自变量的函数. 在上面的例子中涉及到了二次曲线在某点的切线 问题,但在上面的解法中回避了点在第二、三、四象限 的情况.可能有同学会提出对于二次曲线在任意点的切 线怎样求的问题,由于它涉及到隐函数的求导问题.我们 不便去过多的去研究. 下面举一个例子使同学们了解一下求一般曲线在任 意点的切线的方法.(说明:这个内容不属于考查范围.) 例子:求椭圆 在点 处的切线方程. 解:对椭圆方程的两边分别求导(在此把y看成是关于x 的函数)得: 于是所求切线方程为: 备用 利用上述方法可得圆锥曲线的切线方程如下: (1)过圆(x-a)2+(y-b)2=r2上一点P0(x0,y0)的切线方程是: (x0-a)(x-a)+(y0-b)(y-b)=r2. (2)过椭圆 上一点P0(x0,y0)的切线方程是:(2)过椭圆 上一点P0(x0,y0)的切线方程是: (4)过抛物线y2=2px上一点P0(x0,y0)的切线方程是:y0y =p(x+x0). (3)过双曲线 上一点P0(x0,y0)的切线方程是: 证:设x有增量x,则对应的u,y分别有增量u, y. 因为 在点x处可导,所以 在点x处连续. 因此当x 0时, u 0. 当u0时,由 ,且 得: 当u=0时,公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论