外文翻译--影响温轧IF钢剪切带形的纹理发展.doc_第1页
外文翻译--影响温轧IF钢剪切带形的纹理发展.doc_第2页
外文翻译--影响温轧IF钢剪切带形的纹理发展.doc_第3页
外文翻译--影响温轧IF钢剪切带形的纹理发展.doc_第4页
外文翻译--影响温轧IF钢剪切带形的纹理发展.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉科技大学本科毕业论文外文翻译Effects of shear band formation on texture development in warm-rolled IF steelsJonas, J.J.1 Source: Journal of Materials Processing Technology, v 117, n 3, p 293-299影响温轧IF钢剪切带形的纹理发展 乔纳斯杰杰奥 来源:材料加工技术杂志 ,2003年117卷 ,从293到299 页1 导言 钢铁企业最近开始关心温轧(铁素体)轧制,因为它有可能扩大产品范围和降低热轧带钢成本。这些优势可能会影响各阶段的轧制过程,开始加热,其次是温轧,酸洗,冷轧。一些好处,可以实现在每一个阶段的处理列于表1 。带来的变化对产品性能的摘要列于表2 。表1 优势能够实现通过实施温轧 1 全尺寸表( 1000 )表2 改进产品性能归因于温轧 1 全尺寸表( 1000 ) 其他的好处在表1是相当明显的,硬度的影响因素,R值和老化性能概述在表2倒没有这么明显。因此,它这样做的简要单一的机制,影响了上述特性,并解释如何运作(或抑制)可能会导致改善R值和成形。2 背景 据悉,一段时间 2 铁氧体变形略低于Ar3和Ar1温度实际上是弱于变形奥氏体以上Ar3温度。因而,变形的铁素体在温度下降到约700 C时,在纯C钢和600 C时,在IF钢,并不涉及增加轧制负荷超过设计限制轧机的问题。虽然纯C和IF钢可随时热烈推出,只有最新材料适用于现高R值,如表2所示。高R值反过来要求存在可取纹理退火组件,如( 1 1 1 )滚动平面纤维和( 5 5 4 ) 2 2 5 3 。最近的实验中 4 , 5 , 6和7 ,导致有所增加,但如何理解这些组成部分是可取的纹理形成(在IF钢)和为什么他们没有(在LC钢) 。实验表明,重要的因素是存在(在LC钢)而(在IF钢)没有碳的解决方案的热轧制温度。碳在轧制的温度范围内引起动态应变时效( DSA ),这是当时异常的高应变率敏感的特点适用于钢在温轧条件下轧制。高应变率从而抑制敏感性形成的剪切带中的铁素体。显示的这些特点在温轧的显微冷轧IF钢已直接关系到在随后的退火中核的可取( 1 1 1 )纤维。相反,他们没有把温轧冷轧钢材与单一的纹理联系在一起开发 6 。伴随着这一系列事件是一个相当复杂的过程,在这一系列的调查取得的成果,现在将总结和讨论。2.1 实验材料为了探讨如上所述,三种钢将会被检查,同成分显示在表3 。IF钢级别包含百万分之50 C和0.13 Mn和稳定的0.084 钛。两种LC钢进行了研究,有百万分之140到160的C。一个典型的锰浓度的0.22 存在于前面的钢种,而第二种是一个非常低锰含量钢,只有0.009 。主要的区别是,LC等级是低锰含量铝镇静类型钢。表3 钢成分( wt. )全尺寸表( 1000 )2.2 滚动计划最初钢热轧到厚度11毫米,然后气冷。从这些样本中,圆锥端标准应用于实验室准备的热轧。这两个LC等级加热到740摄氏度,然后冷却到轧制温度保温约7 /分钟。标准IF级加热到800 之前轧制。锥形试样的使用意味着单道次轧制可以应用。这导致仿真带钢(关于急促的interpass次)说,被认为是更准确比替代扭转试验机,这是更适合于中厚板轧机模拟。进一步的细节实验轧制程序中提供参数。 4 ,5和6 。2.3 金相结果发生剪切带的液晶材料在700 C的描绘图在图1a 表中。(在低锰变量获得类似结果。)只有少数几个带颗粒可以看出,并且联结本身是相当薄,短,这表明沿着他们的流动是迟缓的。这些“迟缓”联结是独一无二的对轧制温度超过550 C的LC级别样品。 完整大小的图片( 15000 )图1 例子中剪切带材料热轧温度在700 C到减少了65 的范围内 5 :(a) LC钢; ( b )IF 钢。 上述特性形成强烈对比的是IF 钢的材料。这里的性质,是不受带轧制温度影响,这样700 C带状插图例子在图b中对所有轧制温度是典型的。在这种显微图上,沿单个剪切带晶粒分界线的变位现象发生的剪切变形是明显的。分散的晶粒含有的剪切带是由点计算技术决定的 5 。由此产生的数据列于图 2 中,从中可以看出强度带,像它的性质,没有受到IF材料轧制温度的影响。在LC级别,然而,剪切带的强度是高度温度敏感的。上述性质是急剧下降的在进行400 C以上温度轧制时。在温度超过450摄氏度,IF钢比LC等级包含更多的的剪切带,然而低于450 C时,这种关系被颠倒过来。 图2 轧制温度对剪切带频率的影响 5 2.4 纹理2.4.1 轧制织构 变形纹理决定形式研究中是以上述的定向分布函数( ODFs )编号 5 来说明的。(这种类型的描述和介绍详细解释了上述参考。 )所有的材质是典型的铁素体轧制,他们的特点是部分轧制方向(RD)纤维(含双向的1 1 0轴平行对于RD ) ,以及一个完整的正常的方向(ND)纤维(与双向有1 1 1方向对于ND) 。虽然定性滚动纹理相似,LC钢铁在700摄氏度纹理明显具有较高的强度(或极大值)是意义重大的,这些将在以后的第三部分讨论。相比之下,IF钢整个轧制的温度范围内最大强度类似。2.4.2 .退火纹理 一些例子显示的有规则的纹理在700 C退火后在图 3 中。很明显,轧制温度影响在这里比直接轧后更大 6 。这一点特别注意,IF钢在热暖和冷轧后ND纤维( 1 1 1ND)是占主导地位的,而在LC级别,情况更为复杂。经过冷轧,再结晶织构组成ND纤维和戈斯( ( 0 1 1 ) 1 0 0 )的组成部分。相比之下,经过热轧,整个纹理变化对部分RD纤维从( 0 0 1 ) 1 1 0至( 1 1 2 ) 1 1 0 ,只有微不足道的戈斯和ND纤维强度。纹理转变远离ND纤维在最新情况下具有特别重要的意义,并会在下面有更详细考虑。 图3 2 = 45 ODF截面的纹理的LC和IF钢轧在70和700 C和退火700 (强度级别2 , 3 , 4 , 5 ,等等) 6 3 讨论很显然,上述结果显示两个LC和LC材料变形状态温度依赖性是非常不同的。特别是,轧制温度影响远远大于LC等级。可能的原因是将会在下面根据剪切带的性质和密度,纹理的特点来解释,和上述参数对 rav影响 ,因此影响成型性能。3.1 性质和密度剪切带 显然,从图 2,在温度低于400 ,LC钢带的弯曲程度远远(约50 ,而不是25 )大于LF材料。至于更详细地讨论在以下,这可被视为产生的DSA特征前的材料,通过影响工作硬度和敏感性这种现象。相比之下,在热轧范围内,例如在500C以上,两个LC钢材弯曲程度下降到几乎为零,而颗粒的比例仍然含有带几乎不变的在IF样本中。这是有益的带的性质不同在两个类型的钢中。那些在冷轧LC钢中是相对强烈的,显然是因为强烈的流动趋势定位在这些溶质材料。在LF级,另一方面,带不仅不太常见,而且也更不激烈。3.2 纹理特征3.2.1 变形织构这里的结果概括主要特点是显着清晰的热轧( 700 )纹理在LC钢中。这显示在参数 5 是由于相对缺乏剪切带这些样本。没有剪切带反过来有两个实际后果。其中之一是,有少颗粒分裂,第二个问题是,有更多的基质颗粒流转没有带,因为带的发生转让流(因此轮换)远离基质。相反,存在的带降低“终止纹理” (即ND纤维)的范围在基质中是发达的,因此降低了整体强度纹理 5 。清晰轧制织构对退火中产生的新颗粒的核有重要影响,特别是对的定位形成的颗粒。通过这种方式,它有一个重大的影响对退火纹理。3.2.2 退火纹理如上所述变形纹理,LC等级轧制温度对退火纹理的影响远远的高于LF材料,在后者,理想的ND纤维( 1 1 1ND)是占主导地位的在所有轧制温度(见图 3 )中 。LC纹理,另一方面,是和LF级别中的两种方式不同的在图3中,( i )在冷轧条件(如70 轧制)下 ,附加的戈斯组件( ( 0 1 1 ) 1 0 0 )存在,( ii )在热轧条件(例如700度轧制)下 ,ND纤维几乎完全不存在。这就是为什么热轧钢和退火LC钢有低 rav值,因此不太适合比同样处理IF钢的深冲用途。3.2.3 戈斯核和ND纤维组件不同退火纹理现在联系着不同剪切带的密度和性质如上文所述。这种解释是基于以下假设:1. 戈斯说,坚固的组成部分在LC退火材质70 C轧后 (这是在没有其他物质在热轧钢和退火LC钢中)出现是由这一部分核在附近的激烈运动,如严重剪切带;2. 被观察的ND纤维在LC70 C轧后退火纹理和IF钢中在所有条件下(这是在热轧和退火LC钢种是不存在的) ,是由于核附近的剪切带温和强度;3. 热轧LC钢结构缺乏明显的剪切带结构用来解释这些材料退火后缺乏戈斯和ND纤维。3.3 R值的实验材料 rav值计算了所测的纹理,在参 4 中描述的更详细,一些典型的预测在图 4中提到 。这里可以看出,冷轧和退火钢都估计rav值介于1.3至1.6;这是完全符合这些样品存在的显示在图 3中的明确的ND纤维,相比之下,热轧和退火 apr值有非常大的区别:这些LC等级都低于0.5 ,而LF材料料仍然很高,大约1.5 。根据这里的先进观点,低rav-值在热轧钢和退火LC钢的直接原因是轧后缺乏剪切带这些材料(并因此缺乏退火中剪切带成核过程) 。相反,可接受rav-值在热轧和退火IF钢中的直接原因是轧后存在的剪切带和退火过程中剪切带的影响。 图4 计算rav-值的热轧和退火样品 4 3.4 动态应变时效 SA是众所周知的发生在溶质C或N浓度时钢拉伸测试中,如在,在温度范围200-350摄氏度 8 。这种现象存在其高峰时,间隙原子扩散匹配变位的速度。DSA发生轧制条件下,如。温度范围必须增加到470-635 C允许增长从102到102s1 。因此,热轧发生在温度高于DSA 峰值 9 。流动应力的DSA影响有两个不同的应变率规则的显示在图 5中 ,从这些可以看出,敏感性是负面在低温峰值附近,更高度肯定比预期的在高温峰值以上。 图 5 示意图温度与数据流动应力应变率为2 高峰期的LC钢曲线是一个逻辑的DSA 。为了让此图适用于轧制条件下,必须理解的是较低的曲线适用于应变速率的大批材料,这是变形均匀。相比之下,上部(高应变率)曲线涉及到材料的一个潜在的剪切带。在m 0温度范围内 ,潜在的剪切带将成为现成的剪切材料具有较低的流动应力比均匀变形的材料。这是因为移动脱位通过加速可以很容易地摆脱牵引阻力。相反,在温度范围内m 是异常的高,剪切带可形成在所有条件中是非常困难的,这是因为更高的流动应力强调必须把移动有关的位错在DSA(即溶质相互作用)条件下。在温度范围内其中m有“正常” (纯金属)的价值,剪切带将会形成,如果其他一些软化机制(相当于m0)执行。这通常被认为是质地柔软的纹理的协助通过高度局部变形加热 10 。质地柔软纹理涉及改变应变路径从平面应变滚动(纯剪切)到简单剪切。这一机制是特别适用于颗粒的( 1 1 1 ) 1 1 2导向,因为它们拥有最高的抗轧制(最高位错密度)和降低抗简单剪切。3.5 率敏感性 依赖率敏感性对温度可辨别的一般道路过程在图5显示,更详细的描述在图6 。此图所取得的成果总结的调查如上所述。这里有两种截然不同的性能进行比较的: (一) “纯粹”的材料,其中率敏感性仅仅有“低温”和“高温”范围,及( ii )本型的DSA材料,其中偏离是观察到的基本趋势。一流的性能所表现出钢,但不包含溶质C或氮,例如,性能稳定IF钢,在C和N从溶液中去掉,增加了钛和/或铌。在第二类材料,浓度C的解决方案,热轧制温度高,因为没有稳定合金增补和依赖于冷却速度从热轧范围或保温时间后,再加热。 图6 一致的影响温度对应变率敏感性(m)的一些不同的材料 5和12 。m值在LC钢是相当高的,相比LF材料,热轧制温度(即同源温度在0.5至0.65 )如果没有加入合金冶炼钢铁,然后平衡C的含量,预计将在溶液中的铁在温度范围内( 600-800 )含量是100-500ppm 11 。3.6 核的剪切带 观点认为存在的晶粒剪切带,如图1b,巴涅特获得借个的结果认为热轧钢在退火过程中促进组件的形成( 1 1 1 )。在这项研究中,热轧IF钢的参数 4 , 5和6 累进的退火样品分析采用了背散射电子(BSE)成像技术。一个观察的实例在图 7提出了。可以看出, ( 1 1 1 )定向的细胞核内已形成了晶粒剪切带结构。 图 7 一个( 1 1 1 )结晶形成原子核中晶粒剪切带结构的IF钢(百万分之50碳 , 0.13 锰,0.042%铝 , 0.084 钛, 30百万分之30的氮)例子 7 。在700 C的样品变形和部分退火在相同温度下。图像制作使用定向反向BSE成像。4. 结论从上述的调查可以得出以下结论 1 .轧制温度(冷与暖)对LC钢的剪切带密度具有相当的影响力,但并非适用所有的IF钢。冷轧LC钢材比那些正在发展中的IF钢形成的剪切带更加强烈。 2 .冷轧LC钢急剧产生的剪切带是形成明显戈斯纹理组成部分的原因,这发生在这些钢退火后。冷轧或热轧IF钢中存在的中等剪切带与ND纹理组成部分的核联系在一起。热轧LC钢几乎没有缺乏ND组成部分材料的剪切带。 3.具有1 1 1ND成分的热轧和退火IF钢和没有同样的处理LC钢的是具有适于模锻特征类型的钢。这反过来又直接归因于不同的剪切带具有如上面所述的特性。 4. 剪切带特性具有相当大的差别可以归因于C在LC级别中含量的影响。在低温轧制温度,碳带密集的原因是它的存在导致DSA敏感性异常和高不规则和不稳定位错密度。在相对较高的(即热轧)轧制温度,DSA条件不再适用,因此,存在的C导致相反的效果,即它具有的高敏感性防止剪切带的形成。 5.最后,完全稳定钢由于缺乏溶质C (或N )阻止他们显示DSA特性。因此,它们不含有异常的位错密度从而影响剪切带的冷轧温度。以同样的方式,热轧制敏感性不够高,以防止可取类型的剪切带所需要的ND纤维核的产生。鸣谢作者感谢加拿大自然科学与工程研究理事会,加拿大钢铁工业研究协会和BHP研究所提供财政支持这一调查的部分实验。参考资料1. M.R. Barnett and J.J. Jonas. ISIJ Int. 39 (1999), pp. 856873. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (55)2. O.D. Sherby, M.J. Harrigan, L. Chamagne and C. Sauve. Trans. Quart. 62 (1969), pp. 575580.3. R.K. Ray, J.J. Jonas and R.E. Hook. Int. Mater. Rev. 39 (1994), pp. 129172. View Record in Scopus | Cited By in Scopus (212)4. M.R. Barnett, J.J. Jonas and P.D. Hodgson. Iron and Steelmaker 23 (1996), pp. 3945.5. M.R. Barnett and J.J. Jonas. ISIJ Int. 37 (1997), pp. 697705. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (74)6. M.R. Barnett and J.J. Jonas. ISIJ Int. 37 (1997), pp. 706714. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (49)7. M.R. Barnett. ISIJ Int. 38 (1998), p. 78. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (58)8. J.D. Baird. Metall. Rev. 149 (1971), p. 1.9. A. Karimi Taheri, T.M. Maccagno and J.J. Jonas. ISIJ Int. 35 (1995), pp. 15321540.10. J. Gil Sevillano, P. van Houtte and E. Aernoudt. Prog. Mater. Sci. 25 (1980), p. 69. Abstract | View Record in Scopus | Cited By in Scopus (153)11. J.D. Baird, Iron and Steel 36 (1963) 186, 326, 368, 400.12. M.R. Barnett, in: W. Bleck (Ed.), Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties, Verlag Mainz, Aachen, Germany, 1998, p. 61.Effects of shear band formation on texture development in warm-rolled IF steelsJonas, J.J.1 Source: Journal of Materials Processing Technology, v 117, n 3, p 293-299, November 23, 2001ISSN: 09240136 CODEN: JMPTEF Publisher: Elsevier LtdAuthor affiliation: Department of Metallurgical Engineering, McGill University, 3610 University Street, Montreal, Que. H3A 2B2, CanadaAbstract: Warm, or ferritic, rolling is gaining in popularity amongst steelmakers as a means of cutting the cost of steel production and opening up the window of hot band properties. Some of the more unique, but important, metallurgical aspects of the process are reviewed. In particular, it is shown that the effect of changing the rolling temperature from the cold to the warm range on the properties of rolled and annealed sheet is far greater in low carbon (LC) than in interstitial-free (IF) steels. The former contain much lower densities of shear bands than the latter when warm rolled (WR) under the same conditions. This is attributed to the higher rate sensitivities and other physical properties of the low carbon (LC) grades, which arise in turn from the additional dynamic strain ageing (DSA) that accompanies an increase in strain rate. The IF grades have finer grain sizes when annealed after rolling above 500C than the LC grades, apparently because of the much higher incidence of shear bands in the former materials in this temperature range. The conventional 111 ND deep drawing textures of cold-rolled and annealed IF grades are also present after WR and annealing. By contrast, the ND texture is absent in WR and annealed LC steels. This is attributed to the absence of shear bands in WR LC steels and therefore to the absence of the 111 nuclei that appear to be formed in the vicinity of these bands. Conversely, it is the presence of shear bands in WR IF steels that makes possible the replacement of cold rolling in these materials. Published by Elsevier Science B.V. (12 refs.)1. Introduction Steelmakers have recently begun to take an interest in warm (ferritic) rolling, as it has the potential to broaden the product range and decrease the cost of hot-rolled strip. These advantages can affect all stages of the rolling process, beginning with reheating, followed by warm rolling, pickling, and cold rolling. Some of the benefits that can be realized during each of these stages of processing are listed in Table 1. The changes brought about to the product properties are summarized in Table 2.Table 1. Benefits that can be realized through the implementation of warm rolling 1Full-size table (1K)View Within ArticleTable 2. Improvements in product properties attributable to warm rolling 1Full-size table (1K) View Within ArticleWhile the benefits catalogued in Table 1 are fairly self-explanatory, the factors affecting the hardness, r-value and ageing properties summarized in Table 2 are not quite as obvious. It is, therefore, the purpose of this brief review to single out the mechanisms that influence the above properties and to explain how their operation (or suppression) can lead to improvements in r-value and formability.2. Background It has been known for some time 2 that ferrite deformed just below the Ar3 and Ar1 temperatures is actually softer than austenite deformed above the Ar3 temperature. Thus, the deformation of ferrite at temperatures down to about 700C, in plain C steels, and 600C, in IF steels, does not involve increases in rolling load above the design limit for the mill in question. While both plain C and IF steels can be readily warm rolled, only the latter materials permit the attainment of high r-values, as indicated in Table 2. The high r-values in turn require the presence of desirable texture components after annealing, such as the 111 rolling plane fibre and the 554225 3. Recent experiments 4, 5, 6 and 7 have led to some increase in the understanding of just how these desirable texture components are formed (in the IF steels) and of why they are absent (in LC steels). The experiments indicate that the important factor is the presence (in LC steels) or absence (in IF steels) of carbon in solution at warm rolling temperatures. The carbon in solution appears to cause dynamic strain ageing (DSA) in the rolling temperature range, which is then responsible for the unusually high strain rate sensitivities that characterize LC steel under warm rolling conditions. The high rate sensitivities in turn suppress the formation of shear bands in the ferrite. The presence of these microstructural features in warm-rolled IF steels has been directly linked to the nucleation of the desirable 111 fibre on subsequent annealing. Conversely, their absence in warm-rolled LC steels has been associated with the poor textures that are developed after warm rolling 6. As this sequence of events is a fairly complex one, the results obtained in this series of investigations will now be summarized and discussed.2.1. Experimental materials In order to investigate the effects described above, three steels were examined, with the compositions displayed in Table 3. The IF grade contained 50ppm C and 0.13% Mn and was stabilized with 0.084% Ti. Two LC steels were studied, with 140 and 160ppm C. A typical Mn concentration of 0.22% was present in the former, while the second was a very low Mn variant, with only 0.009%. The principal difference between the LC grades was that the low Mn variant was Al-killed.Table 3. Steel compositions (wt.%)Full-size table (1K)View Within Article2.2. Rolling schedules The steels were initially hot rolled down to a thickness of 11mm and then air cooled. From these samples, tapered-end specimens were prepared for laboratory warm rolling. The two LC grades were reheated to 740C and then cooled to the rolling temperature in thermal insulation at about 7C/min. The IF specimens were reheated to 800C prior to rolling. The use of the tapered specimens meant that single-pass rolling could be employed. This led to a simulation of strip rolling (with regard to the shortness of the interpass times) that was considered to be more accurate than the alternative of reversing the pilot mill, which is more suitable for plate mill simulations. Further details of the experimental rolling procedures are provided in Refs. 4, 5 and 6.2.3. Metallographic results The occurrence of shear banding in the LC material at 700C is depicted in Fig. 1a. (Similar results were obtained in the low Mn variant.) Only a few banded grains can be seen, and the bands themselves are quite thin and short, indicating that flow along them was retarded. These “stunted” bands were unique to the LC samples rolled at temperatures above 550C.Full-size image (15K)Fig. 1. Examples of in-grain shear bands in material warm rolled at 700C to a reduction of 65% 5: (a) LC steel; (b) IF steel. The above behaviour contrasted sharply with that of the IF material. Here the nature of the bands was unaffected by the rolling temperature, so that the example of banding illustrated in Fig. 1b for 700C is typical of all rolling temperatures. In this micrograph, the shear taking place along individual bands is made evident by the grain boundary displacements. The fraction of grains containing shear bands was determined by a point counting technique 5. The resulting data are presented in Fig. 2, from which it can be seen that the intensity of the banding, like its nature, was unaffected by the rolling temperature in the IF material. In the LC grades, however, the intensity of the banding was highly temperature-sensitive, dropping-off sharply when rolling was carried out above 400C. Thus, at temperatures above 450C, the IF steel contained more shear bands than the LC grades, while below 450C, this relationship was reversed.Full-size image (5K)Fig. 2. Influence of rolling temperature on in-grain shear band frequency 5.View Within Article2.4. Texture2.4.1. Rolling textures The deformation textures determined in the investigation described above are illustrated in the form of orientation distribution functions (ODFs) in Ref. 5. (This type of presentation is described and explained in more detail in the above reference.) All of the textures were typical of ferrite rolling, in that they were characterized by a partial rolling direction (RD) fibre (containing grains with their 110-axes parallel to the RD) as well as a complete normal direction (ND) fibre (with grains having a 111-direction parallel to the ND). Although the rolling textures were qualitatively similar, the higher intensities (or maxima) evident in the 700C texture determined in the LC steel are significant and these will be taken up later in Section 3. By contrast, the maximum intensities were similar in the IF steel over the whole rolling temperature range.2.4.2. Annealing textures Some examples of the textures measured after annealing at 700C are displayed in Fig. 3. It is clear that the influence of rolling temperature is greater here than it was directly after rolling 6. It is of particular note that the ND fibre (111 ND) is dominant after both warm and cold rolling in the IF steel, while in the LC grade, the situation is more complex. After cold rolling, the recrystallization texture is composed of the ND fibre together with a Goss (011100) component. By contrast, after warm rolling, the entire texture changes to a partial RD fibre running from 001110 to 112110, with negligible Goss and ND fibre intensities. The transition away from an ND fibre texture in the lattermost case is of particular importance and will be considered in more detail below.Full-size image (14K)Fig. 3. 2=45 ODF sections of the textures of the LC and IF steels rolled at 70 and 700C and annealed at 700C (intensity levels 2, 3, 4, 5, etc.) 6.View Within Article3. Discussion It is clear from the results described above that the temperature dependence of the deformed state in the two LC grades differs sharply from that of the IF material. In particular, the influence of rolling temperatur

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论