FreeKaoYan线代知识点总结-数学一.doc_第1页
FreeKaoYan线代知识点总结-数学一.doc_第2页
FreeKaoYan线代知识点总结-数学一.doc_第3页
FreeKaoYan线代知识点总结-数学一.doc_第4页
FreeKaoYan线代知识点总结-数学一.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

线性代数知识点、难点1、阶行列式的定义对于阶行列式的定义,重点应把握两点:一是每一项的构成,二是每一项的符号。每一项的构成是不同行不同列的个元素构成,一个阶行列式共有项。乘积项为的符号取决于的逆序数,即当为偶排列时取正号,当为奇排列时取负。例1 行列式 为二阶行列式,每一项由2个元素构成,第一项为,符号为正,第二项为1*2,符号为负。2、余子式和代数余子式余子式和代数余子式的概念容易出错,在计算中应注意。代数余子式,其中为余子式。一般这类题,重点考察对代数余子式的理解和其基本性质的应用,所以考生一定要灵活掌握,掌握基本思想。下面请看一例:例2 设行列式 则第4行元素余子式之和的值为_【分析】部分考生答案为0。原因是将余子式和代数余子式混淆了。本题中第四行元素的代数余子式之和为0。因为。3、行列式按一行(列)展开设,则或注意:公式中使用的是代数余子式,而不是余子式。4、行列式的计算行列式的基本计算方法有三个:例21 归化 利用行列式的性质将行列式化成较简单且易于计算的行列式(如三角行列式等);例22 降阶 利用行列式的展开定理,将高阶行列式化成低阶行列式进行计算。在实际计算过程中,往往两种方法交替使用:先利用性质将某行(列)化出尽可能多的零元素,再用按行(列)展开定理进行降阶。注意,在化零元素的过程中,尽量不要出现分式,否则,计算过程往往会变得相当繁琐。例23 递推 在降阶中找出高阶行列式与低阶行列式(,通常是)的关系,即递推公式,利用递推公式递推求得。例3 记行列式为,则方程的根的个数为。解析 问方程有几个根,也就是问是的几次多项式。不要错误地认为这样的一定是4次多项式 ,其实适当选系数可构造出0至4任一次数的多项式。由于行列式的每一个位置都含有,若立即展开处理是不妥的,应当先利用性质恒等变形消去一些再展开。将第1列的-1倍依次加至其余各列,有 易见是二次多项式。例4 。解析 方法1方法2解本例的方法有典型性,大家应熟练掌握。5、矩阵的概念矩阵的行数和列数不一定相等。行数和列数相等的矩阵称为方阵。:矩阵和矩阵必须具有相同的行数和相同的列数,且对应元素均相等。如。只有两个矩阵具有相同的行数和列数时,才能进行矩阵的加法运算。矩阵的数乘表示对矩阵中的每一个元素都乘以。注意:是每一个元素,而不是某一行或某一列。矩阵的乘法必须要求的列数等于的行数。矩阵的乘法一般不满足交换律,即。例如:,。对于某些矩阵,即使与都有意义,它们仍不一定相等。如,与都有意义,但为矩阵,而为矩阵,显然不相等。当和均为矩阵时,。行列式是数,可以交换。有矩阵乘积,不能推出或。等价地说,且,有可能使,如上例。矩阵的乘法不满足消去律,即时,有,但。只有当为非奇异矩阵,即时,若,则必有。若,则必有。例5 设4阶矩阵,其中是4维列向量,且,则。解析 本题考查矩阵运算与行列式的性质。由于,所以部分考生将矩阵运算与行列式的性质混淆,得出错误结论。例6 设是3阶方阵,是的伴随矩阵,的行列式,求行列式的值。解析 本题同样考查矩阵运算与行列式的性质。由于,故,故不少考生把错误地写成,把错误地写成。6、关于 是考研中常见的一种题型,也是考生比较畏惧的一种题型。它的特点是题干简单,已知较少,所以考生有时候觉得无从下手,其实所有的题都是由基本东西转换而来的,考生要掌握其基本思路。下面举两例说明:例7 设是阶非0矩阵,满足,且,证明行列式。【证法一】(反证法)若,那么可逆。用左乘的两端,得与矛盾,故。【证法二】(用秩)据已知有,那么因为,即,那么秩从而秩,故。【证法三】(用有非零解)据已知有,即的列向量是齐次方程组的解,又因,所以有非零解,从而。注解 是考研题中一个常见的已知条件,对于应当有两种思路:设是矩阵,是矩阵,若,则(1)的列向量是齐次方程组的解(2)例8 设为阶矩阵,满足,证明。【证明】因为所以 又因于是故必有 7、伴随矩阵伴随矩阵是线代中比较重要的概念,也是一个常考的点,出题点多结合逆矩阵,所以考生在深刻掌握伴随矩阵概念的同时,应该熟记一些和伴随有关的公式定理,这类型题一般解法较多比较灵活,考生应熟记它的定义和基本性质,以不变应万变。涉及伴随矩阵的计算或证明问题一般可从公式及伴随矩阵的相关结论着手分析。以下结论可以直接使用:例9 设为阶非零矩阵,是的伴随矩阵,当时,证明。证明 由,及,有。若,则,设的行向量为,则,即,于是,与已知矛盾,故。例10 设矩阵满足,其中是的伴随矩阵,若为三个相等的正数,则=。解析 题设与的伴随矩阵有关。由,及,有,且或,而,于是,且。8、逆矩阵涉及两个矩阵是否可交换,考虑用逆矩阵的定义进行分析。例11 设阶方阵满足关系式,其中是阶单位阵,则下列哪些正确?1、 2、 3、 4、 5、解析 把题目和矩阵的逆矩阵联系起来。若,则说明,故,。逆矩阵的计算一般有三种方法:(1);(2)通过恒等变形,利用定义进行计算;(3)用初等变换求逆矩阵。在用初等变换法求逆矩阵的整个过程中,如果置于之右,则必须只用行初等变换,而不能用列初等变换。如果置于之下,则必须只用列初等变换,而不能用行初等变换。这点务必注意。例12 设矩阵满足,其中为单位矩阵,则。解析 本题考查用定义求逆矩阵。题中给出了矩阵方程,需经过恒等变形,得出或的形式,确定的逆矩阵。由于,所以,于是,故。题中没有具体给出矩阵的元素,所以不能用初等变换或求伴随矩阵的方法求逆矩阵,只能用定义。从上面的解题过程可以看出,类似于多项式的因式分解。我们配出了因式,不少考生正是忽视逆矩阵的定义而不知如何下手。例13 设,均为3阶矩阵,为3阶单位矩阵,已知,则。解析 本题考查求逆矩阵。先做恒等变形,设法分解出,再进行数值计算。由于,所以,故。本题给出了具体的矩阵,若先求矩阵与之后,再求,计算量就比较大,费时也容易出错。例14 设,为4阶单位矩阵,且,则。解析 对于没有运算法则,通常用单位矩阵恒等变形的技巧化为乘积的形式。本题是考生失误较多的一个考题,这里涉及的思路方法应很好体会。9、初等变换 初等变换是一个非常重要的概念,它可以简化许多问题,但是考生在应用初等变换上还不是很熟练,有时候根本就不知道初等变换是用来干什么的。首先建议学员一定要弄清楚概念,它具有什么性质。知道行变换就是左乘初等矩阵,列变换就是右乘初等矩阵,然后就可以化简计算。初等矩阵均可逆,且其逆是同类型的初等矩阵。例如:即 例15 设,则 答案:【分析】利用初等矩阵。矩阵的一、二两行互换后再二、三两行互换,然后一、二两列互换后再二、三两列互换,即是矩阵,即可见。10、线性相关性线性相关性是考察的重点,同时也是考生的难点。多以选择题或证明题的形式出现。向量组的线性相关(无关)是一个抽象概念,在理解时需仔细体会“有一组”与“任一组”。“有一组”只要求存在,而“任一组”要求全部,强调任意性。许多错误往往发生在此。对于向量组恒有,向量组是否线性相关,其实就是问除上述情况之外,能否再找到另一组使得成立。维向量线性相关存在不全为0的数使得成立;齐次方程组有非零解;向量组的秩;向量组中某个向量可以用其余向量线性表出 。例16 设是阶矩阵,是维列向量,若,证明向量组, ,线性无关【证】(用定义、同乘)设 (1)由于知,用左乘(1)式两端,并把,代入,有 因为,故=0。把代入(1)式,同理可知 从而。类似可得,所以,线性无关。分析 部分考生在设出之后,不知如何往下做,没有想到可用左乘等式的两端,使问题得到解决。例17 设4维列向量线性无关,且与4维列向量均正交,证明线性相关。【证】(用秩)构造矩阵 则矩阵是秩为3的矩阵,由于 所以均是齐次方程组的解。那么,从而线性相关。11、线性表出 线性表出也是常考的一类题型,考察的形式多结合线性相关,线性无关。应结合他们的定义与线性表出的概念,以及他们之间的联系来解题。这类题多用反证法,考生应熟练掌握这部分的题型,否则可能拿到手后根本没有思路,当遇到这种情况时,建议从最基本的定义和概念出发,一步步往结论处求证。有些题可以利用线性相关、无关、向量组的秩、极大线性无关组等概念之间的关系直观的得出结论。例18 设是维向量组,则( )不正确。(A) 如果,则任何维向量都可以用线性表示;(B) 如果任何维向量都可以用线性表示,则;(C) 如果,则任何维向量都可以用唯一线性表示;(D) 如果,则存在维向量不能用线性表示。【分析】利用“用秩判断线性表示”的有关性质。当时,任何维向量添加进时,秩不会增大,从而(A)正确。如果(B)的条件成立,则任何维向量组都可以用线性表示,从而如果取是一个阶可逆矩阵的列向量组,则得到,从而(B)正确。(D)是(B)的逆否命题,也正确。当时,不能保证任何维向量可用线性表示(如时),因此(C)不正确。例19 设维列向量组线性无关,则维列向量组线性无关的充要条件为A 向量组可由向量组线性表出B向量组可由向量组线性表出C向量组与向量组等价D 矩阵与矩阵等价解析 简记向量组为,向量组记为,那么线性无关,A 若可由线性表出,则。又线性无关,有,从而,即线性无关,充分性成立。那么,当时,条件必要吗?设,则与均线性无关,但不能由线性表出,故A仅为充分条件,不是必要条件。B若可由线性表出,则,即有,的线性无关性不能确定,故B不充分。而由A的反例可知B也不是必要条件。C 由A,B知C只是充分条件。D 如果矩阵与矩阵等价,则,因为线性无关,故,故,故向量组线性无关,充分性成立。反之,若向量组与均线性无关,故,从而,即矩阵等价,必要性成立,故选D。由于两个等价的概念不清,本题错误率很高。如果两个向量组向量个数相同且等价,则可推知两个矩阵等价。即与等价与等价但是与()等价时,矩阵与不等价。矩阵与等价是指经初等变换矩阵可转换为矩阵,与等价的充要条件是。12、向量组的秩与极大线性无关组向量组的极大线性无关组往往是不唯一的,其成员可以不一样,但这些极大线性无关组是等价的,极大线性无关组中向量的个数是一样的,由原向量组唯一确定,由此引出向量组秩的概念,向量组的秩为就是指向量组的极大线性无关组有个向量。例20 如果向量组与都是向量组的极大线性无关组,证明。证明 因为是的极大线性无关组,所以 线性相关,于是可由线性表出。从而向量组可由向量组线性表出。又因向量组是极大线性无关组,是线性无关的,所以。同理,故。13、过渡矩阵过渡矩阵是考试所要求的考点之一,但不是每年都出题的。考生在复习时容易忽略这个考点。【定义】设和都是V的基,并设在中的坐标为称矩阵 为到的过渡矩阵。此时,如果V中的向量在中的坐标为,在中的坐标为,则有坐标变换公式 两个规范正交基之间的过渡矩阵是正交矩阵。14、矩阵方程对于矩阵方程,经恒等变形之后有三种可能的形式:,如果矩阵是可逆的,则依次有,然后经计算就可求出。因为矩阵乘法没有交换律,所以在恒等变形时,运算法则一定要正确。例21 已知,其中,则。解析 由,得。因为可逆,有,在本题中,不要把错误地变形为,而得到这是一个特别要防止的错误。例22 设矩阵,矩阵满足,其中是的伴随矩阵,求。解析 若先计算方程中的及,然后再解,则计算过程会十分复杂。为了避免求及,可利用,在等式两边同时左乘矩阵进行化简。,即从而有, ,故 。15、基础解系 基础解系的概念及求法是齐次线性方程组的核心问题,是线性代数中一个非常重要的概念,对于这块内容的考察也是一个重点,但是我们在答疑或者是改卷过程中发现还是有很多同学概念混淆。【定义】设是的解向量,如果(1)线性无关;(2)的任一个解向量可由线性表示,则称是的一个基础解系。例23 齐次方程组的基础解系是。A B C D 解析 严格根据定义,判断基础解系要从是不是解,是否线性无关及解向量的个数三个方面来思考。16、如何确定自由变量并赋值?(求解基础解系)很多考生在这块也容易犯错误,因为不同的赋值方法可能得到不同的结果,所以考生只要概念理解清楚,按照步骤就一定能得到正确答案,下面介绍确定自由变量并赋值的基本步骤:(1) 对系数矩阵作初等行变换化其为阶梯形(2) 由秩确定自由变量的个数(3) 找出一个秩为的矩阵,则其余的列对应的就是自由变量(4) 每次给一个自由变量赋值为1,其余的自由变量赋值为0(注意共需赋值次)。对阶梯形方程组由下往上依次求解,就可以得到方程组的解。注意:对系数矩阵进行变形时,只能进行初等行变换。该方法是求解含参数线性方程组的最一般方法,不论方程的个数与未知数的个数是否相同都可使用,应熟练掌握。例24 齐次方程组的基础解系是。解析 系数矩阵进行初等行变换化为阶梯型,由,知。令,得,令,得,故基础解系是 。齐次线性方程组的基础解系可以不唯一。17、特征向量与线性方程组的解矩阵的特征向量与解线性方程组似乎没有直接联系,其实两者还是有关联的。这就是是的属于特征值0的特征向量是的非零解这是由特征向量的定义直接推过来的,大家容易忽略,但在考研题中会经常用到,学员应熟练使用。例25 设矩阵有特征向量,求线性方程组的通解,其中。解析 由题设均是的特征向量,故有(1),(2),(3)由(1)解得,即有。由(2)解得,即有。由(3)解得,即有。注意到方程组为,其中,由可推出,所以是的一个特解。由,知是的两个解。由知,是的两个线性无关的解。由知,故的基础解系由个线性无关的解向量组成。现是的两个线性无关的解向量,故是的一个基础解系。从而的通解为,其中为任意常数。18、关于公共解公共解也是一个考点,公共解的求解一般有固定的方法,考生针对题型掌握其中的一两种就可以了。下面以例题的形式介绍公共解的几种处理方法:例26 设有两个4元齐次线性方程组 () ()(5) 求线性方程组()的基础解系;(6) 试问方程组()和()是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由。关于公共解,有以下几种处理方法:(1) 把()和()联立起来直接求解;(2) 通过()和()各自的通解,寻求公共解;(3) 把()的通解代入()中,如仍是解,则把()的通解代入()中寻求公共解。如:()的基础解系为 ,那么它的通解就是要是()的解,就因该满足()的方程,故 解出,所以其公共解是 例27 是阶矩阵,证明齐次线性方程组 ()和()同解。【证】如果是()的解,则,显然即是()的解,故()的解全是()的解。 若是()的解,即,那么 即即 故所以必是()的解,即()的解全是()的解,从而方程组()与()同解。19、求相似标准型的方法(对可对角化的矩阵) 阶矩阵可对角化的充要条件是阶矩阵有个线性无关的特征向量。相似对角化是一个重要的考察点,这部分牵涉的计算量比较大,所以考生一定要细心。基本步骤如下: (1) 求的特征值设是重根;(2) 对每个特征值,求的基础解系,设为(3) 令则 其中有个。注意:对应的线性无关的特征向量的个数小于的重数,则不可对角化。若每个的重数与线性无关的特征向量的个数相同,则可对角化。例28 判断矩阵是否与对角矩阵相似?解 由特征方程,得特征值(二重根),对于,解方程,因为,故属于的线性无关的特征向量的个数等于对应的齐次线性方程的基础解系所含向量的个数即1,不等于根的重数2,故不可对角化,即不与对角形矩阵相似。20、矩阵的相似、合同、等价分析(1)等价:矩阵经有限次初等变换变成矩阵,则称与等价; 矩阵等价的充要条件:是同型矩阵且有相同的秩 存在可逆矩阵和 ,使【注意】矩阵的等价与向量组的等价是两个不同的概念,若矩阵 与等价,则,于是,而向量组的等价是指这两个向量组可以互相线性表出。当矩阵与等价时虽有这两个向量组的秩相等,但作为向量组不一定能互相表出,因而不一定等价。例如:,与,的秩相等,但不等价。但是矩阵 等价。反之,若向量组与向量组等价,则向量组秩,从而,故必有矩阵(2)相似:设是阶矩阵,如果存在可逆矩阵P,使,则称与相似,记为:相似矩阵的性质:如 从而有相同的特征值 (有相同的迹) 【注意】这些都是必要条件,可排除哪些矩阵不相似,亦可用来确定相似矩阵的一些参数。若其中有一个不成立,说明与不相似。例29 已知若,则由迹相等知:,得由行列式相等知:得。 并且,由于是对角矩阵,2与-1就是的特征值,则根据特征值相等知,2与-1也是的特征值。(3)合同:两个阶实对称矩阵和,如存在可逆矩阵,使得,则称矩阵和合同。 两个实对称矩阵合同的充要条件:二次型与有相同的正、负惯性指数; 两个实对称矩阵合同的充分条件:实对称矩阵合同的充分条件是。(4) 正交相似:两个阶实对称矩阵,如存在一个正交阵,使得,则称与正交相似。对正交阵来说,因此这时。例30 设则有和合同。0【证明】因为有可逆矩阵,使,或者,由二次型与有相同的正惯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论