大学物理第8章答案.doc_第1页
大学物理第8章答案.doc_第2页
大学物理第8章答案.doc_第3页
大学物理第8章答案.doc_第4页
大学物理第8章答案.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥萨伐尔定律求此螺线管轴线上的磁场。分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x轴正向,如习题8-10图解(a)所示。在螺线管上任取一段微元,则通过它的电流为,把它看成一个圆线圈,它在轴线上O点产生的磁感应强度为习题8-10图解(a)由叠加原理可得,整个螺线管在O点产生的磁感应强度B的大小为由图可知,代入上式并整理可得式中分别为x轴正向与从O点引向螺线管两端的矢径之间的夹角。讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,则有上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B的大小为,方向与轴线平行;习题8-10图解(b)(2)若点O位于半无限长载流螺线管一端,即,或,时,无论哪一种情况均有-(8-19)可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b)所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。图8-49 习题8-11图解8-11两根长直导线互相平行地放置,导线内电流大小相等,均为I10A,方向相同,如图8-49题图(左)所示。求图中M、N两点的磁感强度B的大小和方向。已知图中的。分析:因无限长直流载导线在距离处的磁感应强度为,因此,本题由磁场的叠加原理进行求解较为方便。解:由题可知,两长直导线在处产生的磁感强度大小均为,但方向相反;在处产生的磁感强度均为:方向如图8-49(右)所示,由图可知,和合成的方向沿水平向左。即:处的磁感强度为:处的磁感强度为: 方向沿水平向左。图8-50 习题8-12图解8-12如图8-50题所示,有两根导线沿半径方向接触铁环的a、b两点,并与很远处的电源相接。求环心O处的磁感强度。分析:因带电流为圆弧在其圆心处产生的磁感应强度为,方向可由右手法则确定,因此,本题由磁场的叠加原理求解较为方便。解:设图8-50中圆弧的半径为。由题可知,距O点很远,故;O点在和的延长线上故;又因载流圆弧在圆心处产生的磁感强度为:,其中为圆弧长,故弧和弧在O点产生的磁感强度分别为:,又由于导线的电阻与导线的长度成正比,且圆弧和圆弧构成并联电路,所以有:根据叠加原理可得点的磁感强度为:图8-51 习题8-13图解8-13 如图8-51所示,几种载流导线在平面内分布,电流均为I,它们在点O处的磁感应强度各为多少?分析:因载流圆弧在圆心处产生的磁感强度为:,无限长载流直导线在距离处的磁感应强度为,故可由叠加原理求解。解:图8-51(a)中,将流导线看作圆电流和两段半无限长载流直导线,则:磁感应强度的方向垂直纸面向外。图8-51(b)中,将载流导线看作圆电流和长直电流,则:磁感应强度的方向垂直纸面向里。图8-52 习题8-14图解图8-51(c)中图中,将载流导线看作圆电流和两段半无限长直电流,则:磁感应强度的方向垂直纸面向外。8-14如图8-52(a)所示,一宽为b的薄金属板,其电流为I。试求在薄板的平面上,距板的一边为的点P的磁感应强度。分析:建立图8-52 (b)所示的坐标系,将金属板分成无限多份宽度为的载流长直导线。现在距点处取一载流长直导线,其电流为,在点处产生的磁感应强度为:,再由叠加原理求解。解:载流薄板在点处产生的磁感应强度的大小为:磁感应强度的方向垂直纸面向里。讨论:当时,则表示,宽度为的载流金属板在点处产生的磁感应强度,可视为载流直导线在可点处产生的磁感应强度。的分布曲线如图8-52(c)所示。图8-53 习题8-15图解8-15 如图8-53所示,在磁感强度为B的均匀磁场中,有一半径为的半球面,B与半球面轴线的夹角为。求通过该半球面的磁通量。分析:构建一个闭合曲面,再由高斯定理求解。解:设有一半径为的圆面与半径为的半球面构成封闭曲面,则由磁场的高斯定理可知:所以:图8-54 习题8-16图解8-16电流均匀地流过半径为的圆形长直导线,试计算单位长度导线通过图8-54中所示剖面的磁通量。分析:将导线视为长直圆柱体,由于电流沿轴向均匀流过导体,故其磁场呈轴对称分布,即在与导线同轴的圆柱面上各点,大小相等,方向与电流成右手螺线关系。解:围绕轴线取同心圆环路,使其绕向与电流成右手螺旋关系,根据安培环路定理可求得导线内部距轴线处的磁感强度。;如图8-54所示,在距轴线处的剖面上取一宽度很窄的面元,该面元上各点的相同,由磁通量的定义可知穿过该面元的磁通量为:故:图8-55 (a)习题8-17图解单位长度的磁通量为:8-17如图8-55(a)所示,两平行长直导线相距,每条通有电流,求:(1)两导线所在平面内与该两导线等距的一点(图中未标)处的磁感应强度;(2)通过图中斜线所示矩形面积内的磁通量。已知,。分析:用已知的结论:长直载流导线在空间某点产生的磁感应强度为、磁通的叠加原理和磁场的叠加原理可方便求解。 (1)解:由和磁场的叠加原理可知,两导线所在平面内与该两导线等距的一点A处的磁感应强度的大小为:磁感应强度的方向垂直纸面向里。图8-55 (b)(2)建立如图8-55 (b)所示的坐标,穿过线圈的总磁通等于一条电流产生磁通的两倍,即。方法一:在中距原点O为处取一很窄的面积元,穿过该面积的磁通量为:。穿过线圈的总磁通为:方法二:设两电流相距为,则由两电流产生的磁感应强度大小为故:8-18已知横截面积为裸铜线允许通过电流而不会使导线过热,电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。分析:将导线视为长直圆柱体,由于电流沿轴向均匀流过导体,故其磁场呈轴对称分布,即在与导线同轴的圆柱面上各点,大小相等,方向与电流成右手螺线关系。解:(1)围绕轴线取同心圆环路,使其绕向与电流成右手螺旋关系,根据安培环路定理可知:当时,所以:;当时,所以:习题8-18图解(2)在导线表面,由题可知:,则由(1)问可得:磁感强度的分布曲线如习题8-18图解所示。图8-56 习题8-19图解(a)8-19 有一同轴电缆,其尺寸如图8-56(a)所示。两导体中的电流均为,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1);(2);(3); (4),画出图线。分析:由于同轴导体内的电流均匀分布,其磁场呈轴对称分布,因此可由安培环路定理定理求解。解:取半径为的同心圆为积分路径,由有:(1)当时有: (2) 当时有: (3) 当时有: (4) 当时有: 磁感强度图线如图8-56 (b)所示。图8-57 习题8-20图解8-20如图8-57所示,匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流后,环内外磁场的分布。分析:由于匝线圈均匀密绕在截面为长方形的中空骨架上,由右手螺旋法则可知:螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,因此,由安培环路定理求解较方便。解:取半径为的圆周为积分路径,则由可知:当时, 当时, 当时, 8-21 测定离子质量的质谱仪如图8-58所示。离子源产生质量为,电荷为的离子,离子的初速度很小,可看作是静止的,经电势差加速后离子进入磁感强度为的均匀磁场,并沿一半圆形轨道到达离入口处距离为的感光底片上。试证明该离子的质量为图8-58 习题8-21图解分析:离子在电场中由静止加速后进入均匀磁场中作半径为的圆周运动,所需向心力为其所受的洛伦兹力。证明:根据动能定理有: (1)离子以速率进入磁场后作圆周运动所需的向心力为其所受的洛伦兹力,作圆周运动的半径为,即: (2)由(1)、(2)可得图8-59 习题8-22图解8-22 在一真空室中的电子通过一个电势差被加速,然后进入两个带电平行金属板之间的空间,两金属板之间的电势差为,如图8-59所示。求:(1)如果电子进入两板之间的空间时的速率为,则该电子是通过多大的电势差被加速的;(2)如果两板间还有一匀强磁场,其方向与纸面垂直,则磁场必须多大,才能使电子无偏转地在两板间运动。分析:电子在电场中由静止加速后进入电磁场中,要使其无偏转即作直线运动,则忽略重力时,电子所受的电场力应等于其所受的洛伦兹力。即。解:(1)根据动能定理有:,即(2)电子在两板间运动时,同时受到洛伦兹力和电场力的作用,要使电子不偏转,则洛伦兹力和电场力应相等,即,结合有:8-23 已知地面上空某处地磁场的磁感强度,方向向北。若宇宙射线中有一速率的质子,垂直地通过该处。求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较。分析:解:(1)洛伦兹力的方向为的方向;(2),故质子所受的洛伦兹力为:图8-60 习题8-24图解质子在地球表面所受的万有引力为:由此可见,质子所受的洛伦兹力远大于重力。8-24如图8-60所示。设有一质量为的电子射入磁感强度为的均匀磁场中,当它位于点M时,具有与磁场方向成角的速度,它沿螺旋线运动一周到达点N。试证M、N两点间的距离为分析:将入射电子的速度沿磁场方向和垂直磁场方向分解为和,电子在垂直磁场的平面内在洛伦兹力的作用下作匀速圆周运动,在沿磁场方向,电子不受磁场力作用,作匀速运动。电子在磁场内同时参与上述两种运动,其运动轨迹是等距螺旋线。根据电子前进一个螺距所需的时间与电子作匀速圆周运动所经历的时间相等,可得证式。证:由可得:入射电子在磁场方向前进一螺距所需的时间为: (1)在垂直磁场方向的平面内,电子作匀速圆周运动的周期为: (2)根据电子前进一个螺距所需的时间与电子作匀速圆周运动所经历的时间相等可得:8-25一通有电流为的导线,弯成如图8-61(a)所示的形状,放在磁感强度为B的均匀磁场中,B的方向垂直纸面向里问此导线受到的安培力为多少?图8-61 习题8-25图解分析:将导线分解成两段直线和一段半圆弧三部分。由于两段直导线所受的安培力大小相等,但方向相反,由安培定律可知:,因此,此导线所受的安培力为半圆弧部分所受的安培力。解: 如图8-61 (b)所示,在半圆弧上与轴成角处任取一圆弧,该圆弧所受的力为:,方向如图所示。由对称性可知,整个半圆弧在轴上所受的合力为零。故有:由叠加原理可知:所求导线的安培力为:图8-62 习题8-26图解8-26 如图8-62(a)所示,一根长直导线载有电流,矩形回路载有电流,试计算作用在回路上的合力。已知,。分析:由题可知,矩形上、下两段导线所受的安培力大小相等,方向相反,两力的矢量和为零,而矩形的左右两段导线由于载流导线在该处产生的磁感应强度不相等,且方向相反,因此线框所受的力为这两个力的合力。解:设上、下两段导线所受的力分别为和,左右两段导线所受的力分别为和,如图8-62(b)所示。由安培定律和叠加原理可知,和大小相等,方向相反,即;整个矩形回路所受的力为。即合力的方向向左。8-27 一个正方形线圈,每边长度为0.6m,载有0.1A的稳恒电流,放在一个强度为T的匀强磁场中。求(1)线圈平面平行于磁场时,求线圈所受到的力矩;习题8-27图解(2)线圈平面垂直于磁场时,求线圈所受到的力矩;(3)当线圈的法线与磁场方向之间的夹角从0变到时,画出力矩随角度变化的曲线。解:由均匀磁场对载流线圈的磁力矩公式有:(1)线圈平面平行于磁场时,即,;(2) 线圈平面垂直于磁场时,;(3) 因,力矩随角度变化的曲线如习题8-27图解所示。8-28 如图8-63(a)所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为(1),导体的磁化可以忽略不计。沿轴向有稳桓电流 通过电缆,内、外导体上电流的方向相反。求:(1)空间各区域内的磁感应强度和磁化强度;图8-63 习题8-28图解(2)磁介质表面的磁化电流。分析:由题可知,电流分布呈轴对称,依照右手定则,磁感应线是以电缆对称轴线为中心的一组同心圆。因此,可先由磁介质中的安培环路定理求出环内的传导电流,再由磁感应强度和磁化强度的关系式求出磁感应强度和磁化强度。解:(1)取与电缆轴同心的圆为积分路径。根据,有: 当时, 当时, 当时, 当时, 由,可分别得:(导体的相对磁导率为) (2)由,可分别得磁介质内、外表面的磁化电流大小为:对抗磁质(),在磁介质内表面(),磁化电流与内导体传导电流力向相反;在磁介质外表面(),磁化电流与外导体传导电流方向相反。顺磁质的情况与抗磁质相反H(r)和B(r)分布曲线分别如图8-63 (b)和(c)。8-29在实验室,为了测试某种磁性材料的相对磁导率。常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一环形螺线管。设圆环的平均周长为,横截面积为,线圈的匝数为匝。当线圈通以的电流时,测得穿过圆环横截面积的磁通量为,求此时该材料的相对磁导率。分析:由右手定则可知,磁感线与电流相互环连,磁场沿环型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论