级数求和的常用方法.doc_第1页
级数求和的常用方法.doc_第2页
级数求和的常用方法.doc_第3页
级数求和的常用方法.doc_第4页
级数求和的常用方法.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.7方程式法3 1.8原级数转化为子序列求和3 1.9数项级数化为函数项级数求和3 1.10化数项级数为积分函数求原级数和4 1.11三角型数项级数转化为复数系级数4 1.12构造函数计算级数和5 1.13级数讨论其子序列5 1.14裂项法求级数和6 1.15裂项+分拆组合法7 1.16夹逼法求解级数和72函数项级数求和82.1方程式法82.2积分型级数求和82.3逐项求导求级数和92.4逐项积分求级数和92.5将原级数分解转化为已知级数102.6利用傅里叶级数求级数和102.7三角级数对应复数求级数和112.8利用三角公式化简级数122.9针对2.7的延伸122.10添加项处理系数122.11应用留数定理计算级数和132.12利用Beta函数求级数和14参考文献15级数求和的常用方法 级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题. 由于无穷级数求和是个无穷问题,我们只能得到一个的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和 等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.,其中为首项,为公差 证明:,+得:因为等差级数所以此证明可导出一个方法“首尾相加法”见1.2.1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和.例1:求.解:,两式相加得:,即:.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当=1,;当1,其中为首项,为公比.证明:当=1,易得,当1, , ,-得.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比,再与原级数四则运算后化为等差或等比级数求和.例2:计算.解: , ,-得: ,=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算.解:将各项展开可得: ,所以. 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项,对其分母有理化得:,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1.1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算,其中.解:记= 两边同时乘以得即:解此方程得:.1.8原级数转化为子序列求和若下列条件成立1:(1)当时级数的通项(2)级数各项没有破坏次序的情况而得新序列收敛于原级数 .例6:计算.解:,应用欧拉公式,其中为欧拉常数,.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和.解:建立函数项级数由函数敛散性知识可知其收敛域为,将函数项级数逐项求导可得:= ,由此可知满足微分方程,且易知,解此常微分方程得:,令则可以求出原级数和:. 1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算,其中.解:记.1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例97:设,求.解:由于,令为复数,其中,其中,得:而另一方面=+取实部对应原级数和即得:即:当,且时. 1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例107:请计算下面的级数式子:记,其中.解:构造函数式子:,此函数在单调递减.由于,令,满足=0,.代入题目中的级数式子得:=.1.13级数讨论其子序列引理1:数列收敛的充分必要条件是的任一子序列都收敛且有相同的极限.特别的:数列收敛于的充分必要条件是两个互补的子列,收敛于同一极限.推广可得:定理1:若级数通项满足当时, (收敛判别的必要条件),收敛于的充分必要条件是:部分和的一个子序列收敛于,其中满足:是某个正整数=1,2,将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例116:计算:.解:记,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:,.则: ,所以:. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出.裂项一般形式:,此处.例12:计算.解:记,针对同理采用裂项法记则=,所以=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算.解:=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例148:设为一给定的正整数,求.解:且时,且,所以,即 2 函数项级数求和函数项级数和依据未知数的而定,因此在收敛域内寻找一个新函数去刻画级数和. 2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数解:由函数项级数收敛性知识可知题中函数项级数收敛半径为,逐项求导得即:解此微分方程得:. 2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数.解:因为,作变量替换得:再根据:得:=.所以原级数=. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。 泰勒定理1:若函数在的某领域内存在阶的连续导数,则= ,这里是拉格朗日余项即.设在区间内等于它的泰勒级数的和的充要条件:对一切满足不等式 的,有,上式右边称为在处的泰勒展开式.由泰勒展开式可知右边是个级数,而在求解级数时我们可以逆向来看,已知以级数和像求的方向行进,找准各阶对应的导数形式,并按泰勒级数的样子提炼出.但在实际应用中在处的级数应用较多,称为麦克劳林级数.而由泰勒级数的定义可以将一些基本初等函数推导出来,再有基本初等函数推导复合函数的级数和形式,反过来即是求级数和.这也不失为一种求级数和的选择.这中方式在前面函数项级数求和的过程中已经有所运用,在此总结是为了形成一种较为普遍的方法.即使是级数逐项求导积分法也是基于此理论基础之上的.例17:求解.解:由莱布尼茨定理可以判断此交错级数收敛,且收敛区间为-1,1,将级数逐项求导可得:(利用易知麦克劳林展式)再积分回去便得到级数和.2.4逐项积分求级数和通过级数逐项积分收敛半径不变原理,对原级数逐项积分后化为一些易求的幂级数,再往回求导,可求出原级数和.例18:计算.解:记,对其逐项积分得:=,其中, 所以=. 2.5将原级数分解转化为已知级数分解为已知在数学中是一种基本的技巧,通过转化为我们所知道的知识解决原复杂问题在很多地方都是个不错的想法,因此在解决级数和的问题时我们也引入这思想.我们已知在幂级数中已知的麦克劳林展式有好几个,我们要将这几个基本初等函数的展式牢记于心,还要学会利用拉格朗日展式的角度逆向思考级数求和的问题.我们简单的引入一个问题来说明这种方式,主要是引入这种思想.例19:计算.解:记,利用的麦克劳林展式得:=. 2.6利用傅立叶级数求级数和通过构造函数,并通过延拓的方式求此函数的傅立叶展式,再由收敛定理求解函数值即可求出原级数和,关键在于准确找出傅立叶函数.例20:计算.解:构造傅立叶函数= ,其中作偶延拓得: = ,由此可知傅立叶系数为:,其中 ,(其中).由狄利克雷收敛条件可知:,其中现在令得:,进而可得:.说明:有了以上结果数项级数的关于就可以套用公式了,如:利用2.6结果求解级数和,2.6的结果是一个很常用的级数和公式,因此我们可以直接拿来用.例21:计算,其中满足.解:任意(0,1),记=,由魏尔斯特拉斯定理,因为级数收敛,所以题目中级数在(0,1)上一致收敛.,因为,所以带入上面式子可得级数和为. 2.7三角级数对应复数求级数和三角函数与复数有天然的对应关系,因此将其化归到复数域上再利用复数域知识求解,从而获得原级数的和.例227:计算.解:由复数域上幂级数的麦克劳林展式可知:,及,由,对应实部得,其中,. 2.8利用三角公式化简级数三角级数还可以利用三角公式化简三角级数,化简后的级数可能比原级数容易求解些,通常复杂级数求和都是要转化,转化为能求和的方向.例23:计算.解:由三角函数的积化和差公式可知:原级数=,其中未知数满足:. 2.9针对2.7的延伸在此对2.8的延伸,并不是意味着2.8是个通用的级数和式子,只是看见了另外的一个题可以运用2.8,在此列出是为了表明在求级数和的过程中一些复杂级数可以由另外一些级数求和的,因此遇见复杂级数求和的时候要多注意平常积累的例子,想想平时有没有遇见类似的级数求和问题.例24:计算.解:令,由2.8可知= 其中未知数满足,令,.有,由,当时,有,于是. 2.10添加项处理系数例25:计算,其中.解:令,当时,=,其中,当:时,于是:.2.11应用留数定理计算级数和 定理8:若函数满足以下两个条件:(1)在复平面具有孤立奇点,且这些孤立奇点不为整数及,除去上述奇点外在其它各处都解析;(2).证明:研究围道积分又由函数满足留数定理的条件,则根据定理我们可以得到如下的等式: (1)由引理,csc()在上有界,即存在,使得|.于是,两边取极限得即:,所以,对(1)式取极限得到0=.所以.证明完毕.结论的应用:例268:求级数(不为0)的和.解:令,当不为零时,满足定理的两个条件,那么.即:,当趋近于零时,将上式变形可得:容易证得等式左边的两个级数是收敛的.故上式两端取极限可得上述级数和,2.12利用函数求级数和定理1 6 设为自然数,为实数,且,则.定理2 6 设为自然数,为非负整数,是实数,大于,有.定理3 6 设为自然数,级数在0,1上一致收敛于函数 ,则.这三个定理的证明涉及函数,此处证明从略.只说明这三个定理应用于求解级数和的问题.分析这三个定理可以看它们用于解决一些自然数连续性相乘且置于分母的级数和.将级数和中某些数赋予给定理中的相应的、,再将按定理套用,可以将定理左边的级数化为右边的积分求解.运用定理的关键在于准确找出、,只要这项工作完成,那么剩下的就是积分的问题.例27:计算.解:对应上述三个定理,此级数根据定理1,将置为-1,置为3,置为1则可以将级数化为积分式子,求解具体过程从略.参考文献1 数学分析下册,第三版,华东师范大学数学系编,高等教育出版社20092 数学分析同步辅导及习题全解华东师大版,华腾教育教学与研究中心,中国矿业大学出版社3 李永乐,数学复习全书(理工类数学一),国家行政学院出版社,2012版4 李永乐,数学基础过关660题数学一,西安交通大学出版社,20115 陈文灯,2011版考研数学额复习高分指

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论