《微积分下总结》PPT课件.ppt_第1页
《微积分下总结》PPT课件.ppt_第2页
《微积分下总结》PPT课件.ppt_第3页
《微积分下总结》PPT课件.ppt_第4页
《微积分下总结》PPT课件.ppt_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

使方程成为恒等式的函数.,通解, 解中所含独立的任意常数的个数与方程, 确定通解中任意常数的条件.,n 阶方程的初始条件(或初值条件):,的阶数相同.,特解,引例2,引例1,通解:,特解:,微分方程的解, 不含任意常数的解,定解条件,其图形称为积分曲线.,分离变量方程的解法:,设 y (x) 是方程的解,两边积分, 得,则有恒等式,当G(y)与F(x) 可微且 G (y) g(y) 0 时,的隐函数 y (x) 是的解.,则有,称为方程的隐式通解, 或通积分.,同样, 当 F (x) = f (x)0,时,由确定的隐函数 x(y) 也是的解.,设左右两端的原函数分别为 G(y), F(x),说明由确定,一、齐次方程,形如,的方程叫做齐次方程 .,令,代入原方程得,两边积分, 得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,( h, k 为待,二、可化为齐次方程的方程,作变换,原方程化为,令, 解出 h , k,(齐次方程),定常数),求出其解后,即得原方,程的解.,原方程可化为,令,(可分离变量方程),注: 上述方法可适用于下述更一般的方程,一、一阶线性微分方程,一阶线性微分方程标准形式:,若 Q(x) 0,称为非齐次方程 .,1. 解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程 ;,对应齐次方程通解,齐次方程通解,非齐次方程特解,2. 解非齐次方程,用常数变易法:,则,故原方程的通解,即,即,作变换,两端积分得,二、伯努利 ( Bernoulli )方程,伯努利方程的标准形式:,令,求出此方程通解后,除方程两边 , 得,换回原变量即得伯努利方程的通解.,解法:,(线性方程),伯努利,一、,令,因此,即,同理可得,依次通过 n 次积分, 可得含 n 个任意常数的通解 .,型的微分方程,型的微分方程,设,原方程化为一阶方程,设其通解为,则得,再一次积分, 得原方程的通解,二、,三、,型的微分方程,令,故方程化为,设其通解为,即得,分离变量后积分, 得原方程的通解,内容小结,可降阶微分方程的解法, 降阶法,逐次积分,令,令,定理 2.,是二阶线性齐次方程的两个线,性无关特解,数) 是该方程的通解.,例如, 方程,有特解,且,常数,故方程的通解为,(自证),推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,则,三、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y (x) 是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解 .,证: 将,代入方程左端, 得,定理 4.,分别是方程,的特解,是方程,的特解. (非齐次方程之解的叠加原理),定理3, 定理4 均可推广到 n 阶线性非齐次方程.,二阶常系数齐次线性微分方程:,和它的导数只差常数因子,代入得,称为微分方程的特征方程,1. 当,时, 有两个相异实根,方程有两个线性无关的特解:,因此方程的通解为,( r 为待定常数 ),所以令的解为,则微分,其根称为特征根.,特征方程,2. 当,时, 特征方程有两个相等实根,则微分方程有一个特解,设另一特解,( u (x) 待定),代入方程得:,是特征方程的重根,取 u = x , 则得,因此原方程的通解为,特征方程,3. 当,时, 特征方程有一对共轭复根,这时原方程有两个复数解:,利用解的叠加原理 , 得原方程的线性无关特解:,因此原方程的通解为,小结:,特征方程:,实根,以上结论可推广到高阶常系数线性微分方程 .,内容小结,特征根:,(1) 当,时, 通解为,(2) 当,时, 通解为,(3) 当,时, 通解为,可推广到高阶常系数线性齐次方程求通解 .,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,一、, 为实数 ,设特解为,其中 为待定多项式 ,代入原方程 , 得,为 m 次多项式 .,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,Q (x) 为 m 次待定系数多项式,(2) 若 是特征方程的单根 ,为m 次多项式,故特解形式为,(3) 若 是特征方程的重根 ,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程 .,即,即,当 是特征方程的 k 重根 时,可设,特解,内容小结, 为特征方程的 k (0, 1, 2) 重根,则设特解为,为特征方程的 k (0, 1 )重根,则设特解为,3. 上述结论也可推广到高阶方程的情形.,有,3. 多元函数的极限,4. 多元函数的连续性,1) 函数,2) 闭域上的多元连续函数的性质:,有界定理 ;,最值定理 ;,介值定理,3) 一切多元初等函数在定义区域内连续,P61 题 2; 4; 5 (3), (5) ( 画图 ) ; 8 P129 题 3; *4,思考与练习,定理:若 f (P) 在有界闭域 D 上连续, 则,* (4) f (P) 必在D 上一致连续 .,在 D 上可取得最大值 M 及最小值 m ;,(3) 对任意,(有界性定理),(最值定理),(介值定理),(一致连续性定理),闭域上多元连续函数有与一元函数类似的如下性质:,(证明略),一、全微分的定义,定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y ),可表示成,其中 A , B 不依赖于 x , y , 仅与 x , y 有关,,称为函数,在点 (x, y) 的全微分, 记作,若函数在域 D 内各点都可微,则称函数,f ( x, y ) 在点( x, y) 可微,,处全增量,则称此函数在D 内可微.,(2) 偏导数连续,下面两个定理给出了可微与偏导数的关系:,(1) 函数可微,函数 z = f (x, y) 在点 (x, y) 可微,当函数可微时 :,得,函数在该点连续,偏导数存在,函数可微,即,内容小结,1. 微分定义:,2. 重要关系:,定义,空间光滑曲面,曲面 在点,法线方程,1) 隐式情况 .,的法向量,切平面方程,2. 曲面的切平面与法线,空间光滑曲面,切平面方程,法线方程,2) 显式情况.,法线的方向余弦,法向量,内容小结,1. 方向导数, 三元函数,在点,沿方向 l (方向角,的方向导数为, 二元函数,在点,的方向导数为,沿方向 l (方向角为,2. 梯度, 三元函数,在点,处的梯度为, 二元函数,在点,处的梯度为,3. 关系,方向导数存在,偏导数存在, 可微,方向: f 变化率最大的方向,模: f 的最大变化率之值, 梯度的特点,内容小结,1. 函数的极值问题,第一步 利用必要条件在定义域内找驻点.,即解方程组,第二步 利用充分条件 判别驻点是否为极值点 .,2. 函数的条件极值问题,(1) 简单问题用代入法,如对二元函数,(2) 一般问题用拉格朗日乘数法,设拉格朗日函数,如求二元函数,下的极值,解方程组,第二步 判别, 比较驻点及边界点上函数值的大小, 根据问题的实际意义确定最值,第一步 找目标函数, 确定定义域 ( 及约束条件),3. 函数的最值问题,在条件,求驻点 .,8. 设函数,D 位于 x 轴上方的部分为D1 ,当区域关于 y 轴对称, 函数关于变量 x 有奇偶性时, 仍,在 D 上,在闭区域上连续,域D 关于x 轴对称,则,则,有类似结果.,在第一象限部分, 则有,内容小结,(1) 二重积分化为二次积分的方法,直角坐标系情形 :,若积分区域为,则,若积分区域为,则,则,(2) 一般换元公式,且,则,极坐标系情形: 若积分区域为,在变换,下,(3) 计算步骤及注意事项, 画出积分域, 选择坐标系, 确定积分序, 写出积分限, 计算要简便,域边界应尽量多为坐标线,被积函数关于坐标变量易分离,积分域分块要少,累次积分好算为妙,图示法,不等式,( 先积一条线, 后扫积分域 ),充分利用对称性,应用换元公式,三重积分计算:方法1. 投影法 (“先一后二” ),该物体的质量为,细长柱体微元的质量为,微元线密度,方法2. 截面法 (“先二后一”),为底, d z 为高的柱形薄片质量为,该物体的质量为,面密度,投影法,方法3. 三次积分法,设区域,利用投影法结果 ,把二重积分化成二次积分即得:,小结: 三重积分的计算方法,方法1. “先一后二”,方法2. “先二后一”,方法3. “三次积分”,具体计算时应根据,三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.,2. 利用柱坐标计算三重积分,就称为点M 的柱坐标.,直角坐标与柱面坐标的关系:,坐标面分别为,圆柱面,半平面,平面,3. 利用球坐标计算三重积分,就称为点M 的球坐标.,直角坐标与球面坐标的关系,坐标面分别为,内容小结,积分区域多由坐标面,被积函数形式简洁, 或,* 说明:,三重积分也有类似二重积分的换元积分公式:,对应雅可比行列式为,变量可分离.,围成 ;,一、曲面的面积,设光滑曲面,则面积 A 可看成曲面上各点,处小切平面的面积 d A 无限积累而成.,设它在 D 上的投影为 d ,(称为面积元素),则,故有曲面面积公式,若光滑曲面方程为,则有,即,若光滑曲面方程为,若光滑曲面方程为隐式,则,则有,且,3. 计算, 对光滑曲线弧, 对光滑曲线弧, 对光滑曲线弧,3. 计算, 对有向光滑弧, 对有向光滑弧,4. 两类曲线积分的联系, 对空间有向光滑弧 :,推论: 正向闭曲线 L 所围区域 D 的面积,格林公式,例如, 椭圆,所围面积,定理1,二、平面上曲线积分与路径无关的等价条件,定理2. 设D 是单连通域 ,在D 内,具有一阶连续偏导数,(1) 沿D 中任意光滑闭曲线 L , 有,(2) 对D 中任一分段光滑曲线 L, 曲线积分,(3),(4) 在 D 内每一点都有,与路径无关, 只与起止点有关.,函数,则以下四个条件等价:,在 D 内是某一函数,的全微分,即,内容小结,1. 定义:,2. 计算: 设,则,(曲面的其他两种情况类似),注意利用球面坐标、柱面坐标、对称性、质心公式,简化计算的技巧.,其方向用法向量指向,方向余弦, 0 为前侧 0 为后侧,封闭曲面, 0 为右侧 0 为左侧, 0 为上侧 0 为下侧,外侧 内侧, 设 为有向曲面,侧的规定,指定了侧的曲面叫有向曲面,表示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论