大学数学基础教程课后答案微积分.pdf_第1页
大学数学基础教程课后答案微积分.pdf_第2页
大学数学基础教程课后答案微积分.pdf_第3页
大学数学基础教程课后答案微积分.pdf_第4页
大学数学基础教程课后答案微积分.pdf_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 大学数学基础教程(微积分 1-4 章)习题答案 习题 11 解答 1设,求 y x xyyxf+=),( ),( 1 ),(), 1 , 1 (),( yxfy x xyf yx fyxf 解; y x xyyxf+=),( xxy y yxf yx y x xyf x y xyyx f + =+=+= 2 22 ),( 1 ;),(; 1 ) 1 , 1 ( 2设,证明:yxyxflnln),(=),(),(),(),(),(vyfuyfvxfuxfuvxyf+= ),(),(),(),( lnlnlnlnlnlnlnln )ln)(lnln(ln)ln()ln(),( vyfuyfvxfuxf vyuyvxux vuyxuvxyuvxyf += += += 3求下列函数的定义域,并画出定义域的图形: (1);11),( 22 +=yxyxf (2); )1ln( 4 ),( 22 2 yx yx yxf = (3);1),( 2 2 2 2 2 2 c z b y a x yxf= (4). 1 ),( 222 zyx zyx zyxf + = 解(1)1, 1),(=yxyxD y x 1 1-1 -1 O 2 (2)xyyxyxD4, 10),( 222 =xx306 )6,5( )6,5( 2 2 = x x f 在点(5,6)取得极小值),(yxf88)6 , 5(=f 又()0243612)6(26 )6,1 ( )6,1( 2 )6,1( =+= xxxf 当时,有极小值,从而该极小值就是所求的最小值(唯一驻点) 2 1 =x)(xf = 2 1 2 2 1 2 2 = xx d 8 27 故抛物线和直线之间的最短距离为 2 xy=02 =yx 8 27 5、求抛物线被平面截成一椭圆,求原点到此椭圆的最长与 22 yxz+=1=+zyx 最短距离。 解:设椭圆上任意一点为(x,y,z),它到原点的距离为 222 zyxd+= 此问题即是求在条件下的最大值和最小值。 222 zyxd+= =+ += 1 22 zyx yxz 令) 1()( 22222 +=zyxzyxzyxL 由 += += += += += 令 令 令 令 令 01 0 02 022 022 22 zyxL zyxL zL yyL xxL z y x 由-得0)(2(1=+yx 若代入,得,1=0= 再代入,=r (4)设+= 432 2 1 2 1 2 1 2 1 s += 3 3 2 2 3 2 3 2 3 2 1 因为为的几何级数,为 的几何级数,故,均为收敛s 2 1 =rr 3 2 s 级数, 故原级数收敛。 习题 42 1(1)因为,而级数发散,故该级数发散。 2 1 1 12 1 lim= n n n =1 1 n n (2) 因为,而发散,故原级数发散。 nnn n n n un 11 1 1 22 = + + + + = =1 1 n n =1n n u (3)因为,而且收敛,故原级数收敛 。 ()() 1 45 lim 1 41 1 lim 2 2 2 = + = + nn n n nn nn =1 2 1 n n (4)因为,而且收敛,故原级数收敛。 = n n n n n n 2 2 sin lim 2 1 2 sin lim =12 1 n n 2 (1),因为, n n n n u 2 3 =1 2 3 ) 12 3 (lim 2 3 2)1( 3 limlim 1 1 1 = + = + = + + + n n n n u u n n n n n n n n n 故级数发散。 52 (2)因为,故级数收敛。1 3 1 ) 1 ( 3 1 lim 3 3 )1( limlim 2 2 1 2 1 a b 当时,无法判断。ab=1= a b 4 (1),而, n n nu) 4 3 (=1 4 3 4 31 lim ) 4 3 ( ) 4 3 )(1( limlim 1 1 = + = + = + + n n n n u u n n n n n n n 故级数收敛 53 (2),而,故级数收敛。 ! 4 n n un=10 1 1 ) 1 (lim ! )!1( )1( limlim 4 4 4 1 = + + = + + = + nn n n n n n u u nn n n n (3)因为,而级数发散,故级数发散。1 2 1 lim 1 )2( 1 lim 1 lim 1 = + + = + + = + n n n nn n n u nn n n =1 1 n n (4)因为,1 2 ) 1 1( 1 lim2) 1 (2lim !2 )1( )!1(2 limlim 1 1 1 + = =1 1 n n = 1 11 n na 5(1 ),显 然为一 交错级数,且 满足, 2 1 1 1 )1( n u n n = =1n n u 1+ nn uu ,0lim= n n u 因而该级数收敛。又是的级数,所以发散, = = = 1 2 1 1 1 nn n n u1pp =1n n u 即原级数是条件收敛。 (2)对于,故收敛,1 3 11 3 1 lim 3 3 1 limlim 1 1 nn uu 1 1 + n un 发散,故原级数是条件收敛。 =1n n u (5)因为,故级数发散。= = = 123)1( 22222 lim ! 2 lim 2 1 nnn u nnnnn n n n n n 6 (1)因为为几何级数,且, = = = = 0 1 11 1 1 ) 4 1 () 4 1 ( 4 )1( n n n nn n n 4 1 =r 其和为。 5 4 ) 4 1 (1 1 1 1 = = r (2)因为 = = = = = = +=+=+= + 100111 ) 3 1 ( 3 1 ) 2 1 ( 2 1 ) 3 1 () 2 1 () 3 1 () 2 1 ( 6 23 nn n n nn n n n nn n n nn 而由知,其和为 =0 ) 2 1 ( n n 2 1 =r2 2 1 1 1 1 1 = = r 由知,其和为 =0 ) 3 1 ( n n 3 1 =r 2 3 3 1 1 1 1 1 = = r 故 2 3 2 3 3 1 2 2 1 6 23 1 =+= + =n n nn 7设排球每一次下落后的高度依次为: , hhh hhh hhh hhh hh n nn )43(43 ,)43(43 ,)43(43 ,)43(43 ,43 1 4 34 3 23 2 12 1 = = = = = 55 反弹的总距离hhhhhs n n nn n n 3 431 1 4 3 )43( 4 3 )43( 011 = = = = = 8由已知可得: ,)(sinsin)90cos( ,)(sinsin ,)(sinsin)90cos( ,sin 4 3 2 bEFEFFG bDEEF bCDCDDE bCD o o = = = = L=|CD|+|DE|+|EF|+|FG|+ = sin1 sin sin1 1 sin)(sinsin)(sin 10 = = = = b bbb nn nn 习题 4-3 1 (1) 2 1 )1)1(2 )1(2 limlim 21 2 1 = + + = + + n n a a R n n n n n n 当时,级数收敛,所以该级数的收敛域为 2 1 x= 2 1 , 2 1 (2)1 11 1 limlim 1 = + = + n n a a R n n n n 当时,级数收敛,当时,级数发散,4x=6x= 所以该级数的收敛域为)6 , 4 (3)该幂级数只含有奇次幂项,记,则有 nn n n nx u )3(2 12 + = 2 12 1112 1 3 1 )3(2( )3(2()1( limlimx nx xn u u nnn nnn n n n n = + + = + + 当时,级数收敛,当时,级数发散,于是收敛半径3x3R= 当时,级数发散,所以该级数的收敛域为3x=)3,3( (4)该幂级数只含有偶次幂项,记,则有 nn n axu 2 )(2+= 56 2 2 221 1 2 )(2 )(2 limlimax ax ax u u nn nn n n n n += + + = + + 当时,级数收敛,当时,级数发散,于是收敛半径 2 2 ax+ 2 2 R= 当时,级数发散,所以收敛域为 2 2 ax=) 2 2 a, 2 2 a(+ 2 (1)设)11()( 1 1 = = xnxxs n n )11( 1 )()( 1 0 1 1 0 = = = x x x xdxnxdxxs n n x n n x 故)1x1( )x1( 1 x1 x )x(s 2 = = (2)设)1x1( 1n2 x )x(s 1n 1n2 = = )1x1( x1 1 x)x(s 2 1n 2n2 = = )11( 1 1 ln 2 1 )1ln()1ln( 2 1 1 1 1 1 2 1 1 1 1 1 2 1 )1)(1( 1 1 1 1 1 1 1 )0()( 00 00 0 2 0 2 0 2 + = += + + = + = + = = = += x x x xxdx x dx x dx xx dx xx dx x dx x dx x sxs xx xx xxx (3)设)1x1(x)1n2()x(s 1n n += = 则)1x1(xx)1n(2)x(s 1n nn 1n += = = 令)1x1(x)1n()x(u n 1n += = 57 )1x1( x1 x xdx)x(u 2 1n 1n x 0 = = + )1x1( )x1( xx2 x1 x )x(u 2 22 = = 故)1x1( )x1( xx3 x1 x )x1( xx2 2)x(s 2 2 2 2 = = (4)设)1x1( )1n(n x )x(s 2n n = = )1x1( 1n x )x(s 2n 1n = = )1x1( x1 1 x)x(s 2n 2n = = )1x1()x1ln(dx x1 1 )0(s)x(s x 0 = += )1x1(x)x1ln()x1(dx)x1ln()0(s)x(s x 0 += 习题 4-4 1 (1) 1 22 2 22 1 2 31 1 111 ()(1)(1) 11111 222 1()1 2242!4 4 1 4 1(21)! ( 22) 2!2 n n n n n n xx n xx n xx n = + = + =+ =+ =+ (2) = += = 1n n21n2 1n2 )x( )!n2( x2 )1( 2 1 2 x2cos1 xsin (3)设)x1xln()x(f 2 += 58 1 22 2 2 1 2 1 111 ()(1)(1) 1 222 ( )(1)1() ! 1 (21)! 1( 1)( 11) (2 )! n n nn n n fxxx n x n xx n = = + =+= + + = + )1x1(x )1n2( !)!n2( !)!1n2( )1(x dxx !)!n2( !)!1n2( )1(dx)0(f)x(f 1n 1n2n 1n x 0 n2n x 0 + += += = + = (4))x(x !n )a(ln ea 0n n n alnxx += = (5)设)x1ln()x1()x(f+= )1x1( n x )1(1)x1ln(1)x(f 1n n 1n +=+= = )1x1( )1n(n x )1(x dx n x )1(dx)0(f)x(f 1n 1n 1n 1n x 0 n 1n x 0 + += += = + = (6)x !)!n2( !)!1n2( ) 1(1x x1 x 1n n2n 2 = += + )1x1(x !)!n2( !)!1n2( )1(x 1n 1n2n += = + 2 2 4x 1 1 2 1 3 4x 1 1 3 1 2x 1 1x 1 2x3x 1 )x(f 2 + + + = + + = + = = = += 0n n n n 0n n )4x( 2 1 2 1 )4x( 3 1 3 1 11 0 11 ()(4)( 62) 23 n nn n xx + = =+ 注:收敛域: 4 11 71 3 62 624 11 2 x x x xx + + 59 3 (1) 10 18o = += 642 ) 10 ( !6 1 ) 10 ( !4 1 ) 10 ( !2 1 1 10 cos 46 2 10) 10 ( !6 1 |r | 9511 . 0 ) 10 ( !4 1 ) 10 ( !2 1 1 10 cos 42 + (2))1x1(x !)!n2( !)!1n2( )1(1 x1 1 1n n4n 4 += + = = + + += +1n 1n4n 2 1 04 ) 2 1 ( ) 1n4(!)!n2( !)!1n2 ( ) 1( 2 1 dx x1 1 413 2 10) 2 1 ( 13 1 ! !6 ! !5 |r| 4969.0) 2 1 ( 24 1 ) 2 1 ( 10 1 2 1 dx x1 1 95 2 1 04 + + 4 设+= = xx !n n )x(s 1n n 2 2 121 11 ( )() (1)!(2)!(1)! nnnxx nnn n s xxxxx exex nnn = =+=+ + 则 = = 1n 2 e2)1(s !n n 5 = = + = + = 0n nn ) M m ()1(m M m 1 1 m Mm mM 由于很小,则 M m |r| 2 0 m 习题 4-5 1、解: (1)因为; 22 11 22 22 0 = ee edxea xx 60 )4( )()1(2 42 )()1( cossin 42 )()1( sincos 2 1 cos 1 2 22 222 22 22 222 + = = + = += n ee a a nee nxdxnexe nee nxdxnenxenxdxea n n n n xx n xxx n )4( )()1( 2 cossin 2 1 sin 1 2 221 222 + = = = + n een b a n xdxnenxenxdxeb n n n xxx n 所以的傅氏展开式为)(xf 。 ), 2, 1 , 0 ,)12( )sincos2( 4 )1( 4 1 )( 1 2 22 =+ + + = = nnx nxnnx n ee xf n n (2)因为 ;2 1 3 1 232 0 = xdxxa 22 2 2 )1(12 coscos 6 sin 6 sin 31 cos3 1 n nxdxnxx n nxdx n x nx n x nxdxxa n n = = = (奇函数在以零为对称中心的区间上的定积分等于零)。0sin3 1 2 = nxdxxbn 所以的傅氏展开式为。)(xf),(,cos )1( 12)( 1 2 2 + += = xnx n xf n n (3)因为是奇函数,所以。)( 3 sin2x x ), 2 , 1 , 0(0=nan 19 318 )1( 13 3 sincos 13 3 sincos 6 3 1 3 1 sin 3 1 3 1 sin 2 3 1 cos 3 1 cos 2 sin 3 sin2 2 2 1 00 = + = + + = + = + n n n n n n n n n n dxxnxnnxdx x b n n 61 所以的傅氏展开式为。)(xf),(,sin 19 )1(318 )( 1 2 1 = = + xnx n n xf n n 2、解: (1)因为为偶函数,所以,而 2 1)(xxf=), 2 , 1 , 0( , 0 =nbn , 6 11 )1(4)1( 2 1 2 2 1 0 2 2 1 0 2 0 = dxxdxxa ()()() ()() ), 2 , 1( )1( 2sin 8 2 2cos 4 2 )2sin( 2 1 4 2cos14 2 1 cos1 2 1 2 22 1 2 1 0 3322 2 2 1 0 2 2 1 0 2 = = + = = + n n xn n xn n x xn n x dxxnxdx xn xa n n 由于在内连续,所以)(xf()+, 。),(,)2cos( )1(1 12 11 )( 1 2 1 2 + += = + xxn n xf n n (2)因为为奇函数,所以 + = 10),1( 01),1( )( xxx xxx xf1l , 0 =且 n a = l l n xdxnxxxdx l n xf l b 1 1 sin)1(2sin)( 1 = 1 0 2 1 0 sin2sin2xdxnxxdxnx = 1 0 2 1 0 sin2sin2xdxnxxdxnx ()() += += 1 0 1 0 2 1 0 1 0 1 0 2 1 0 cos2 2 cos 2 cos 2 cos 2 )(cos 2 )cos( 2 xdxnx n xnx n xdxn n xnx n xndx n xnxd n 1 03 1 0 2 1 0 2 1 0 2 cos )( 4 sin )( 4 sin )( 4 )(sin )( 4 cos 2 cos 2 xn n xdxn n xnx n xnxd n n n n n = += += 62 = = = += 12, )( 8 2 , 0 )( 4 cos )( 4 3 33 kn n kn n n n + = = xxn n xf n ,)12sin( )12( 18 )( 1 33 3解:因为为偶函数,所以; 2 cos)( x xf=), 2, 1(0=nbn = 0 cos 2 cos 2 cos 2 cos 1 nxdx x nxdx x an dxxnxn += 0 ) 2 1 cos() 2 1 cos( 1 0 2 1 ) 2 1 sin( 2 1 ) 2 1 sin( 1 + + + = n xn n xn + + = 12 cos 12 cos2 n n n n () + = + 12 1 12 12 1 1 nn n () () ), 2, 1 , 0( 14 4 1 2 1 = = + n n n 令得,且在上连续,0=n 4 0 =a 2 cos)( x xf=, () = + += 1 2 1 )(, 14 cos 1 42 2 cos n n x n nxx 4解:作奇延拓,得,使有,(),(xxF( ) ( () = = 0 , ),( 0 , 0 , 0),( xxf x xxf xF 计算系数: 63 () )0(,sin 1 )( ), 2 , 1(, 1 sin 2 1 cos 2 2 sin 2 2 ;, 2, 1 , 0 , 0 1 0 0 2 = = = = = = xnx n xf n n nx n nx n x nxdx x b na n n n 5解:作偶延拓:,计算系数:(,2)( 2 =xxxF = += = = = 1 2 2 00 2 22 0 22 0 )0(,cos )1( 8 3 2 )( ), 2 , 1( , 0 ), 2, 1(, 8 )1(cos 4 cos2 2 ; 3 4 2 2 n n n n n xnx n xf nb n n nxdxxnxdxxa dxxa 6解: :用正弦级数逼近:作奇延拓,由题知周期为,由系数公式:2=l ), 2 , 1 , 0( , 0 =nan 2 0 , 2 sin 2 sin 18 )( 2 sin )( 8 0 2 sin )( 4 sin )( 4 2 cos 2 cos 4 2 cos 4 cos 4 0 2 sin )( 4 2 cos 2 2 cos 2 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论