外文翻译--轮毂式电动汽车驱动系统_第1页
外文翻译--轮毂式电动汽车驱动系统_第2页
外文翻译--轮毂式电动汽车驱动系统_第3页
外文翻译--轮毂式电动汽车驱动系统_第4页
外文翻译--轮毂式电动汽车驱动系统_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附 录 A 外文翻译 英文资料翻译 原文 Wheel type electric cars driving system 1. Development situation and overview Wheel type electric car is a kind of driving type electric cars, there are two basic forms, namely direct driving type electric wheels and belt wheel edges reducer electric wheels. It will be installed on the wheel hub of motor is omitted, traditional clutch, the transmission, the main reducer and differential unit etc, simplifies configuration and improve the transmission efficiency, and to realize the electric control technology through the electronic differential control wheels. Electric wheel will become the future development direction of electric cars. The electric car wheel type of the study in Japan. Japans keio university of electric car research group has developed five different forms of vehicles. In 1991, with Tokyo electric power company jointly developed by IZA electric car seat, Cd - battery power method, with four rated power for 6.8 kW, 25kW reached the peak power of the rotor permanent magnet synchronous motor driving wheel speed can reach the highest, 176km/h. In 1996, the Japanese national institute of environmental groups jointly developed electric wheel drive system of rear wheel drive electric cars, the ECO electric wheel drive system chooses permanent brushless dc motor, power rating for 6.8 kW, for 20kW peak power, and planetary gear reducer, the electric wheels adopt mechanical braking and motor is a combination of regenerative braking. In 2001, the group launched by using lithium battery for power supply, eight high power ac synchronous motor driving wheel independent KAZ electric car. The installation of the eight wheels, and greatly increased the power, thereby the highest speed 311 km/h. The electric system KAZ used in high speed, high performance of motor rotor inside, the peak power can reach 55 kW, improve the ability of the limit speed KAZ cars, make its 0 100km/h acceleration time reach 8s. In order to make the motor output speed with the actual requirements, wheel rotation KAZ electric system matching planet gear. Using KAZ front disc brake drum brake using, rear. In 2003, Toyota motor company launched in Tokyo motor show the fuel cell concept car is also used to end an argument - N electric wheel drive technology. General motors corp. In 2001, the new trial wire four wheel drive car fuel cell concept also USES electric wheel drive Autonomy, electric wheel drive system of flexible control and arrangement, the better able to realize control technology. Domestic electric wheel drive mode study also made some progress. Tongji university chunhui series of fuel cell vehicles using the concept of four brushless dc motor driving wheel independent electric wheels module. Byd in 2004 Beijing auto ET concept car also adopted new drive electric car: four wheel drive motor independent pattern edge. Chinese academy of sciences, Beijing three-ring general electric company developed electric car brushless dc motor with wheels, say again electric wheels. A single wheel electric power, voltage 7.5 kW, double rear 264 V direct drive. The Chinese institute of four wheel corporation 724 electric automobile, motor performance index for the power rating: 3 kW, rated speed 3000r/min, rated voltage is 110 V. 2. Structure analysis Wheel electric drive system have direct driving type electric wheels and belt wheel edges reducer electric wheels are two basic forms. It depends on the rotor speed is using high-speed rotor motor or within. Direct drive a car with the rotor motor, electric wheels and a complete parts assembly wheel, electronic differential mode, motor, decorate in the wheels within wheels drive vehicle driven directly. Its main advantage is the motor, small volume, light quality and low cost, high transmission efficiency, compact structure, vehicle structure layout and design, also facilitate the retrofit design. This electric wheel directly in the installation of the wheel rim driving wheel rotation. But when the electric car in large torque, need is installed in the direct drive motor must type electric wheels can provide large in low torque. In order to make the car can have good performance, motor must also has a wide range of torque and speed adjustment. The work of the impact and vibration and the wheel rims wheels, request must be strong and reliable supporting, at the same time, because of the spring load, to ensure the quality of the comfort of vehicle suspension systems, elastic elements and damping element optimization design, motor output torque and power is limited, the system of wheel size high cost. Belt wheel gear wheel drive electric power while using high-speed rotor motor system in modern high-performance electric cars, suitable for the operation. It KuangYongChe originated from the traditional electric wheels, belongs to the slowdown driven type, the electric motor speed wheels allow in operation, usually the highest speed motor design in 4000-20000 r/min, its purpose is to obtain higher than the power, and the other performance of motor without special requirement, and can be used in ordinary speed motor rotor. In motor and reducer institution arrangement between the wheels, deceleration and increase torque of electric cars, thus ensuring the role in the speed to make enough big torque. Motor output shaft through institutions and wheel drive shaft, motor bearing not connected directly under the load and the road wheels, improve the working conditions of the bearings, Adopts fixed planetary gear reducer, ratio of the system with large range of speed and torque, give full play to the characteristics of the motor speed, eliminate the motor torque and power under the influence. Size wheel In the design of main consideration should be given to the solution of gear noise and lubrication problem, work of motor and internal system structure design requirements. Figure 1 for wheel edges deceleration ware electric wheels. 3. Wheel type electric car key technology (1)The wheel motor and its control technology Currently used electric wheels of the rotor motor speed and high-speed rotor motor are within the radial magnetic flux permanent magnet motor wheel. Within the high-speed rotor motor structure and the traditional permanent magnet synchronous motor or brushless dc motor are basically the same. The highest speed motor coil and mainly by friction loss and variable factors such as organization ability. As the rotor wheeled permanent magnet motor electric car driven directly by the actuator, motor NdPeB installation of the surface of the rotor surface-mounted stator slots structure more rare. The wheel diameter had substructure of constraint conditions make the armature diameter increase and improve the motor ability, At the same time, had made motor cooling conditions worsen substructuring for long time, overload ability have certain effect. Adopt stator slots structure, few &reduce volume, simplified structure, to generate electricity needed to improve the indexes of harmonic. Magnetic rotor position sensor adopts magnetic resistance type, and motor multipole rotating transformer ontology integration installation, compact structure. Motor driven by axial Angle transform technique, use axis rotation Angle transform chip will output signal is transformed into digital signals, for the current instruction position of each phase of the synthesis of circuit current instruction, With the current negative feedback signal current instruction by current regulator (CR), control type inverter power circuit, SPWM drive motor running. Wheel type electric vehicle generally has two or four wheel edges of multiple motor, implement coordinated control. The key to achieve technology is the drive motor operating control, including the vehicle steering stability control, differential control system dynamic performance optimization and control, etc. In the stab ility control, traction control system for the main research direction, the comprehensive energy strategy in battery technology progress, not enough before are equally important. In order to research on vehicles, electric cars and the optimization design of effective mathematical model and the rapid and effective system operation control algorithm is also world research hotspot. (2) Energy and energy management system Battery electric vehicle is the source, is also restricted the development of key factors of electric cars. Electric car battery is the main performance indexes than energy, energy density, power, circle life and cost, etc. To make electric cars and fuel automobile competition, the key to develop high energy, power and long-life efficient battery. So far, the electric car battery after three generations of development, has achieved breakthrough progress. The first generation is lead-acid batteries, mainly is the valve-control lead-acid battery (VRLA), due to its high price lower than energy, and discharge, high magnification is currently only high-volume production electric car batteries. Second generation is mainly alkaline battery, have Ni - Cd, Ni fd-mh, making - S, Li ion - and Zn/Air etc. Various battery, the ratio of energy and power than lead-acid battery is high, can greatly improve the performance of the electric vehicle dynamic range and lead-acid batteries, but the price is high. Article 3 the batteries in fuel cells. Fuel cells directly will fuel energy into electricity, high efficiency, energy transformation of energy and power than than all high, and can control the reaction process, energy conversion process can be continuous, is the ideal car batteries, but is still in the development stage, and some key technology is still a breakthrough. Because the electric vehicle Co., LTD, its energy vehicle driving car fuel mileage far less than the level of energy management system, the purpose is to maximize the use of the vehicle, increase energy limited trip mileage. Intelligent energy management systems acquisition from each subsystem, the sensor information input these sensors and temperature sensor, including car when the source current and voltage recharge sensor, motor current and voltage sensor, speed and acceleration sensor and the outside environment and climate, sensors, etc. Energy management system can realize the following basic functions: the energy distribution system, The prediction of the surplus energy and continue to trip mileage, Provide the best driving mode, When the regenerative braking rationally adjust the renewable energy, Automatic temperature control and adjustment. Intelligent management system as the brain, electric car, with great flexibility and adaptability. 4. Conclusion The paper introduces development status of electric vehicle wheel type and structure characteristics, illustrates the steering wheel motor-driven car control model and key technologies. Compared with the traditional electric cars and electric car wheel type of vehicle structure, transmission efficiency and dynamic performance, range, etc are very obvious advantages, is the future development direction of electric cars. At present, low quality of high power, wheel motor research is still hot. At the same time, the power steering wheel, driving, braking torque and speed of motor control is the key and difficult point for future research. 轮毂式电动汽车驱动系统 1、发展现状 轮毂式电动汽车是一种新兴的驱动式电动汽车,有两种基本形式,即直接驱动式电动轮和带轮边减速器电动轮。它直接将电机安装在车轮轮毂中,省略了传统的离合器、变速器、主减速器及差速器等部件,简化了整车结构,提高了传动效率,并且能通过控制技术实现对电动轮的电子差速控制。电 动轮将成为未来电动汽车的发展方向。 目前国际上对轮毂式电动汽车的研究主要以日本为主。日本庆应义塾大学的电动汽车研究小组已试制了 5 种不同形式的样车。其中, 1991 年与东京电力公司共同开发的 4座电动汽车 IZA,采用 Ni-Cd电池为动力源,以 4个额定功率为 6.8kW、峰值功率达到 25kW的外转子式永磁同步轮毂电机驱动,最高速度可达 176km/h。 1996年,该小组联合日本国家环境研究所研制了电动轮驱动系统的后轮驱动电动汽车 ECO,该车的电动轮驱动系统选用永磁直流无刷电动机,额定功率为 6.8kW,峰值功率为 20kW,并配以行星齿轮减速机,该电动轮采用机械制动与电机再生制动相结合的方式。 2001 年,该小组又推出了以锂电池为动力源,采用 8 个大功率交流同步轮毂电机独立驱动的电动轿车 KAZ。该车安装了 8 个车轮,大大增加了该车的动力,从而使该车的最高速度达到 311 km/h。KAZ的电动轮系统中采用高转速、高性能内转子型电动机,其峰值功率可达 55 kW,提高了 KAZ轿车的极限加速能力,使其 0 100km/h加速时间达到 8s。为了使电动机输出转速符合车轮的实际转速要求, KAZ 电动轮系统匹配行星齿轮减速机构。 KAZ前轮采用 盘式制动器,后轮采用鼓式制动器。 2003年日本丰田汽车公司在东京车展上推出的燃料电池概念车 FINE-N 也采用了电动轮驱动技术。美国通用汽车公司 2001 年试制的全新线控 4 轮驱动燃料电池概念车Autonomy 也采用电动轮驱动型式,电动轮驱动系统灵活的控制与布置方式,使该车能更好地实现线控技术。 国内对电动轮驱动方式的研究也取得了一些进展。同济大学研制的 “春晖 ”系列燃料电池概念车采用了 4个直流无刷轮毂电机独立驱动的电动轮模块。比亚迪于 2004年在北京车展上展出的 ET概念车也采用了电动汽车最新驱动方式: 4个轮边电机 独立驱动模式。中国科学院北京三环通用电气公司研制的电动轿车用直流无刷轮毂电机,又称电动车轮。单个电动车轮功率为 7.5 kW,电压 264 V,双后轮直接驱动。中船总公司 724研究所的 4轮电动汽车,其电动机性能指标为:额定功率 3 kW,额定转速 3000r/min,额定电压为 110 V。 2、结构分析 轮式电驱动系统有直接驱动式电动轮和带轮边减速器电动轮两种基本形式。这取决于是采用低速外转子还是高速内转子电动机。直接驱动式汽车采用低速外转子电动机,电动轮与车轮组成一个完整部件总成,采用电子差速方式,电机布置在车轮内部,直接驱动车轮带动汽车行驶。其主要优点是电机体积小、质量轻和成本低,系统传动效率高,结构紧凑,既有利于整车结构布置和车身设计,也便于改型设计。这种电动轮直接将外转子安装在车轮的轮辋上驱动车轮转动。然而电动汽车在起步时需要较大的转矩,也就是说安装在直接驱动型电动轮中的电动机必须能在低速时提供大转矩。为了使汽车能够有较好的动力性,电动机还必须具有很宽的转矩和转速调节范围。由于电机工作产生一定的冲击和振动,要求车轮轮辋和车轮支承必须坚固、可靠,同时由于非簧载质量大,要保证车辆的舒适性,要求对悬架系统弹 性元件和阻尼元件进行优化设计,电机输出转矩和功率也受到车轮尺寸的限制,系统成本高。 带轮边减速器电动轮电驱动系统采用高速内转子电动机,适合现代高性能电动汽车的运行要求。它起源于矿用车的传统电动轮,属于减速驱动类型,这种电动轮允许电动机在高速下运行,通常电动机的最高转速设计在 4000 20000 r/min,其目的是为了能够获得较高的比功率,而对电动机的其它性能没有特殊要求,可以采用普通的内转子高速电动机。减速机构布置在电动机和车轮之间,起到减速和增矩的作用,从而保证电动汽车在低速时能够获得足够大的转矩。电机 输出轴通过减速机构与车轮驱动轴连接,使电机轴承不直接承受车轮与路面的载荷作用,改善了轴承的工作条件;采用固定速比行星齿轮减速器,使系统具有较大的调速范围和输出转矩,充分发挥驱动电机的调速特性,消除了电机输出转矩和功率受到车轮尺寸的影响。设计中主要应考虑解决齿轮的工作噪声和润滑问题,对电机及系统内部的结构方案设计要求更高。图 1为轮边减速器型电动轮示意图。 图 1 轮边减速器型电动轮示意图 3、 轮毂式电动汽车关键技术 ( 1)轮毂电机及其控制技术 目前电动轮所用的低速外转子电动机和高速内转子电动机都是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论