



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DiagnosisTechnologyResearchOfMammographicMassesinContent-basedImageRetrievalSongLi-xin,WangQing-yanCollegeofElectrical&ElectronicEngineeringHarbinUniversityofScienceandTechnologyHarbin,CWangLiDept.ofgynecologyHeilongjianghospitalHarbin,CAbstractInordertoassistdoctortodiagnosisofmammo-graphicmasses,amethodisproposed.22featuresareextractedfromeachqueriedregionofinterest(ROI).Ak-nearestneighbor(KNN)algorithmisusedtoretrievesimilarimagesfromdatabase,andfurthercalculatethemutualinformation(MI)betweenthequeriedimageandtheimageswhichareintheretrievalresults,soastoimprovetheretrievalperformance.Finally,theschemetakesthefirstnineimageswiththehighestMIscoresasthefinalretrievalresults.Withthepurposeofprovidingavailabledecision-makinginformationofdiagnosticaids,wecompareandanalyzethreecalculatingmethodsofdecisionindex.TheExperimentresultsshowthatthemethodisbetterthanmethodofusingKNNonly,andimprovetheaccuracyofdiagnosiseffectively.Keywords-mammographyimage;content-basedimagere-trieval;computer-aideddiagnosis;mutualinformationI.INTRODUCTIONScreeningmammographyisconsideredthemostreliableandeffectivemethodintheearlydetectionofbreastcancer.However,mammographyimageisblurryanditscontrastislowduetoimagingprinciple,manysmallerlesionsarenoteasytobeobservedandextractedowingtotheoneswhichhavebeenoverwhelmedbythenormalbreasttissue.Therefore,earlydetectionanddiagnosisofbreastcancerreliedheavilyontheradiologistssubjectiveviews.Computer-AidedDetectiontechnologyprovidesanvaluable“secondreview”1forradiologistsintheearlydetectionprocessofbreastcancer.ThetraditionalCADsystemofbreastmassesdetectiongenerallybasedonartificialneuralnetwork.ThemethodofContent-BasedImageRetrievalnotonlyeliminatedtheburdenofdesigningandtrainingneuralnetworkclassifiers,butalsomadefulluseofpastdiagnosisofbreastmassesoftheoriginalempiricaldata.Accordinglyitcaneffectivelyhelpphysiciansimprovetheaccuracyoftumordiagnosis.AlthoughCBIRhasbeenappliedinanumberoffields,thebreastimageswhicharecharacterizedbyhigherresolution,biggerimagesimilarityandmoreinformationaredifferentfromothers.Itisdifficulttoretrievesimilarimagewiththesamepathologicalcharacteristicsfromimagelibrary.Itisthereforeessentialtoestablisharetrievalsystemwithmedicalpractice.MammographyofCBIRisstillastudyingdirection.Someresearchinstituteshavebeencarriedoutrelevantresearch.BinZheng2hasproposedaninteractiveretrievalmethodwhichimprovedthevisualsimilaritybetweentheresultimagesandthequeriedimages.GeorgiaD.Tourassi3adoptedmutualinformationasthesimilaritymeasurementamongimages,classifiedtheregionofinterestbythemostsimilarimagesofretrieval.HilaryAlto4studiedthevariouscombinationsofshape,textureandedgesharpnessfeatures,whichusedinclassifyingbenignandmalignanttumormasses.Toimprovetheretrievalaccuracyandachievethediagnosis,thispaperstudiesacombinationofKNN+MIretrievalmethodofbreastmassesdetection,andgivesadecisionindexofaideddiagnosisonthebasisofthisstudy.II.CONTENT-BASEDMAMMOGRAPHICMASSESIMAGERETRIEVALAftersubmittingaqueriedROIimage,thesystemwillautomaticallyextract22featherswhichmatchthefeathersinthedatabase,obtainseveralfrontimagesaccordingtothesimilarityfromhightolow,andfinallycalculatethedecisionindexandanalyzethepathologicalinformationofmassesaccordingtotheretrievalimagesandtheirpathologicalinformation.TheoverallprocessofthemethodisshowninFig1.Figure1.ThediagramoftheoverallprocessFig.2showstheresultoftheretrieval.ThequeriedROIisintheupper-leftandthepathologicalinformationisthefollowing.ThefirstnineROIsareintheleftandthelettersaboveeachROImeanclasses,“M”:malignant,“B”:benign.A.FeatureExtractionTheconventionalcontent-basedretrievalaimedatimprovingvisualsimilaritybetweentheretrievalimagesandthequeriedimage,butthebreastX-rayimagesarevisuallyverysimilar,sofeatureselectionprocessshouldnotbebasedsolelyonthevisualsenseofthesimilarities.Doctorsalsotend978-1-4244-4713-8/10/$25.002010IEEEtolikethesamekindofimagesasthesimilarimages,whichisthesimilarityinthemedicalsense.Therefore,thisfeatureselectionbasedonthefollowingprinciples:ifafeatureisvalidinclassification,itisalsovalidinretrieval.Thus,themorewhicharethesamewiththequeriedimagesintheresults,themoreeffectivetheretrievalis.Figure2.TheresultoftheretrievalAfterthequeryROItobeobtained,iftocalculatetherelevantcharacteristicsofasuspiciouslump,thenitrequiressegmentationofsuspiciousmasses.Thesegmentationofsuspiciousmassesisdividedintothreestepsinthistest:1.Removethe“backgroundtrend”5ofthequeriedROIimage;2.Restraintheadjacenttissuesofsuspiciousmasses;3.SegmentthesuspiciousmasswiththeimprovedMultilayerTopographicSegmentation6.Afterthat,22featuresareextractedfromeachROIasthefeatherset,includingBinZhengsetal2twelvefeathers,NicholasPetricks7sevenfeathersandRenchaoJins8threefeathers.B.SimilarityMeasurementTheimagesimilaritymeasureisthesimilaritybetweentheimagefeatures.Thesimilaritymeasurementmethodswillhaveadirectimpactontheperformanceofimageretrieval.ThispaperproposesacombinationofKNNwithMIsimilaritymatchingalgorithm.1)K-nearestneighboralgorithm:Amulti-featurek-nearestneighbor(KNN)basedalgorithmwasappliedtosearchforthe“computationallysimilar”ROIsinthereferencelibrary.Similaritywasmeasuredbythedifferenceinfeaturevalues,()rifxbetweenaqueried()qROIyandareference()iROIsxinamultidimensional(n)featurespace,21(,)()()nqirqrirdyxfyfx=(1)Thesmallerthedifference(“distance”),thehigherthedegreeofthecomputed“similarity”isbetweenanytwocomparedregions.Thecomputeddistancesbetweenatest(queried)regionandeachofthestoredreferenceregionsweresorted(rankordered)fromthesmallesttothelargest.ThefirstKregionsinthelistwerethenselectedastheK“mostsimilar”(orthebest“matched”)referenceregions.Adistanceweightwasdefinedas020201,(,)1,qiidddyxwddd=Andtheclassificationscore,ortheprobabilitythataregionisactuallymalignant,wascomputedas111MiiMNijijwPww=+,KMN=+(2)WhereNisthenumberofmalignantmassregionsandMisthenumberofbenignmassregionsthatwereselectedinthesetofK“mostsimilar”ROIs.2)Maximummutualinformationmethod:TheresultsretrievedbyKNNmethodarefurthermatchedbythemaximummutualinformationmethod,andthefinalresultisbetterthanothersbyusingKNNonly.Thecorrelationbetweentworandomvariablesentropy,isalsoknownasmutualinformation.Mutualinformationbetweentworandomvariablescanserveasastatisticalmeasureofcorrelation.Inthepreviousstudy,imageretrieval,mutualinformationalsohasbeenappliedtocontent-basedmedicalimageretrieval,andhasachievedrelativelygoodresults.GiventwoimagesXandY,theirMII(X;Y)isexpressedas:2(,)(,)(,)log()()xyxyxyxyPxyIxyPxyPxPy=(3)WherePXY(x,y)isthejointprobabilitydensityfunction(PDF)ofthetwoimagesbasedontheircorrespondingpixelvalues.PX(x)andPY(y)arethemarginalPDFs.Thebasicideaisthatwhentwoimagesarealike,themoreinformationXprovidesforYandviceversa.Therefore,theMIcanbethoughtasanintensity-basedmeasureofimagessimilarity.IfthequeryimageXandastoredimageYdepictsimilarstructures,thenthepixelvalueinimageXshouldbeagoodpredictorofthepixelvalueatthecorrespondinglocationinimageY.Consequently,theirMIshouldbehigh.AsshowninEq.3,theMIestimationoftwomammo-gramphicROIsrequirescomputationofthejointandmarginalPDFs.Wefollowedthehistogramapproach9forthetask.SincetheimagesofDigitalDatabaseforScreeningMammography(DDSM)consideredinourstudyare12-bitimages,thePDFswereestimatedusingareducednumberof256equal-sizedintensitybinstoavoidpotentialoverestimationerrors10.ThisisatypicalpracticeforMIestimationinimageregistration.C.DecisionIndexBesidestheretrievedROIimages,thedecisionindex(DI)indicatingtherelativeprobabilitythataROIcontainsamasscanbecalculatedautomaticallywithaformulaandoutputtotheuser.AhigherDIvaluemeansahigherprobabilitythattheROIcontainsamass.TheformulaforcalculatingtheDIisbasedonthemethodsproposedbyGeorgiaD.Tourassietal3.1211(,)(1()()(,)(1()(,)(1()MQIIIQMNQIIQJJIJSYXKRXDIYSYXKRXSYXKRX=+=+(4)WhereMisthenumberofimagesretrievedfromthedatabasethosecontainmassROIs.NisthenumberofimagesretrievedfromthedatabasethosecontainnormalROIs.K=M+N.Rank(XI)istheorderingnumberofXIwhentheretrievedROIimagesaresortedindescendingorder.Itcanbeseenthatforeithermethod,thehigherDImeansahigherprobabilitythattheROIcontainsamass.DI2consi-deredthefactoroforderingnumberofXIandassignedarighttoeachofsimilaritymeasurevaluesanditgivesabetterper-formanceinourevaluationexperiments,sowetakeitasourinitialdecisionindex.III.EXPERIMENTALRESULTSANDANALYSISROIintheimagedatabasecomesfromDDSMofUniversityofSouthFlorida.TheROIdatabaseincludes514malignantROIsand321benignROIs.EachROIisillustratedinanimagewithsizeof125125pixels.Thedepthofimageis12bits.EachROIcontainsatmostonemass.NomassintheROIweextractedisonthechestwall.Recallrateandprecisionrateisthestandardinformationretrievalevaluationmethod.ThenumberofimagesreturnedKtakesaveryimportanteffectfortheperformanceofKNNretrievalsystem.TheaverageprecisionratewillbecalculatedtoobtainanoptimalKvalue.FromFig.3itisconcludedthatprecisionrateisnotmuchdifferentforthedifferentKvalues.However,consideringthemutualinformationmatchingfortheresults,therelativelysmallandtheprecisionvalueslightlyhighKisselected,K=25.Figure3.TheaverageprecisionofdifferentKvaluesAthresholdvalueisusedasadividingpointbetweenbenignandmalignantmasses,andtheFig.4showsthedistributionofbenignandmalignantmassesofdecisionvaluesinthedatabase.Thereisnocleardemarcationpointbetweenthemassesfromthehistogram.Thus,athresholdvalueshouldbedefinedbetween0and1.The“ERRORRATE”isdefinedbythenumberofmalignantROIofDITandthenumberofbenignROIofDIT,accordinglybythenumberofwrongdecisionunderT.ItischangingwithT,andcanbefoundoutbyExhaustiveAttackmethod.Figure4.ThehistogramofdecisionindexThenareceiveroperatingcharacteristic(ROC)curvecanbeplottedtoevaluatetheperformanceofusingoursystemtoclassifybetweentrue-positiveandfalse-positivemassregions.TheareaunderROCcurve(AUCvalue)isusedastheindexofperformance.Theleave-one-out11samplingschemeandtheROCcurveanalysisareusedfortheassessmentofoursystem.EachtimeaROIimageischosenfromthedatabaseFigure5.TheROCcurveoftwomethodsindifferentDiesasthequeryROIimage,thentherestROIimagesformatestdata-base.Theprocedureisperformedrepeatedly,eachtimeaROIimageinthedatabaseischosenasaqueryimage.Fig.5showedtheROCcurveoftwomethodsindifferentDies.Tab.IshowedtheAZvaluesoftwomethodsindifferentDies.Analysingandcomparingthisthreemethods:DI1addssomeeffectsofsimilarityonthebasisofsequence.PandDI2arebasedonweightedsumofthereciprocalsquareofthedistanceasthemainbasisforsimilaritymatching.DI2addedtheweightedsumofsequencesimilarityplaysacertainroleinimprovingdetectionaccuracyrate.ItcanbeshowedfromTab.IthatDI2isobviouslybetterthantheothers,themethodofKNN+MIisbetterthanmethodofusingKNNonly.TABLEI.THEAZVALUESOFTWOMETHODSINDIFFERENTDIESDI1PDI2KNN0.70840.01830.73530.01740.74520.0171KNN+MI0.71980.01780.76120.01660.79840.0154EachmammographicimageinDDSMdatabasecontainspathologydiagnosticinformationoflocationofalesion,whichisgivenbyseveralradiologistsbasedontheirexperiencesofyearsinthediagnosis.Then,intheROIresults,weextractedpathologyinformationforeachROIrespectivelyfromthepathologymessagedata,includingDensity,Shape,Margins,Assessment,Subtlety,etc.Tab.IIshowsthatthecomparativeprecisionineachpathologicalinformationintwomethods.TABLEII.THEPRECISIONOFEVERYPATHOLOGYINFORMATIONINTWOMETHODSDensityShapeMarginsAssessmentSubtletyKNN62.15%70.58%71.46%67.25%72.53%KNN+MI65.48%76.97%78.65%61.36%69.57%ItisclearfromthesedatathatthereisacertaindifferenceButingeneralnotintwodifferentretrievalmethodsforthedifferentpathologicalinformation.Therefore,themethodofKNN+MIcanbringagreatreferencevalueforadoctorinthepathologicaldiagnosisandprovideagreathelptotheearlydiagnosisofbreastmasslesions.IV.CONCLUSIONSAmethodforcomputer-aideddetection(CAD)ofmammographicmassesisproposedandaprototypeCADsystemispresented.ThesystemcanautomaticallyevaluatethepossibilitythataROIismalignantorbenignbyretrievingsimilarROIimagesfromthedatabaseandcalculatingtheDIvalueforeachROI.Thesystemperformanceisevaluatedusingtheleave-one-outsamplingschemeandROCcurveanalysismethodbasedontheDIsoutputbytheprototypesystem.CBIR-basedCADisausefulmethodforcomputer-aideddetectionofmammograhpicmasses.ACKNOWLEDGMENTSTheworkwassupportedbyNaturalScienceFoundationofHeilongJiangProvince(F200912).REFERENCESS1L.J.WarrenBurhenne,S.A.Wood,C.J.DOrsi,S.A.Feig,D.B.Kopans,etal,“Potentialcontributionofcomputer-aideddetectiontothesensitivityofscreeningmammography,”Radiology,vol.215,no.2,pp.554-562,2000.2Z.Bin,A.Lu,L.A.Hardesty,J.H.Sumkin,C.M.Hakim,etal.“Amethodtoimprovevisualsimilarityofbreastmassesforaninteractivecomputer-aideddiagnosisenvironment,”.MedicalPhysics,vol.33,no.1,pp.111117,2006.3G.D.Tourassi,R.Vargas-Vorace
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61196-1-102:2025 EN Coaxial communication cables - Part 1-102: Electrical test methods - Test for insulation resistance of cable dielectric
- 健康营养学课件
- 华东版八上数学试卷
- 皇冠中学初三数学试卷
- 医院设备科管理课件
- 真空虾仁行业深度研究分析报告(2024-2030版)
- 中国机械零部件未来发展趋势分析及投资规划建议研究报告
- 2025届广东省七校联合体物理高二下期末质量跟踪监视试题含解析
- 钛合金设备项目安全风险评价报告
- 健康理疗师培训课件资源
- 基因组变异数据库构建-洞察阐释
- 2025年夜间餐饮市场夜市经济现状与未来研究报告
- 地铁安检考试试题及答案
- 人生规划家族会议课件
- DB36T 2033.2-2024国土空间总体规划数据库规范+第2部分:县级
- TCCEAS001-2022建设项目工程总承包计价规范
- 邮政车辆安全培训课件
- 2025年安徽省城乡规划设计研究院有限公司招聘笔试参考题库附带答案详解
- 《信息技术与小学数学教学融合的创新实践》
- 行政事业单位差旅费培训
- 2025-2030中国新能源汽车行业发展分析及发展趋势预测与投资风险研究报告
评论
0/150
提交评论