外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF

收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

DIAGNOSISTECHNOLOGYRESEARCHOFMAMMOGRAPHICMASSESINCONTENTBASEDIMAGERETRIEVALSONGLIXIN,WANGQINGYANCOLLEGEOFELECTRICALELECTRONICENGINEERINGHARBINUNIVERSITYOFSCIENCEANDTECHNOLOGYHARBIN,CHINALIXINS99YAHOOCOMCNWANGLIDEPTOFGYNECOLOGYHEILONGJIANGHOSPITALHARBIN,CHINAWANGLI1439163COMWANGQINGYAN1984163COMABSTRACTINORDERTOASSISTDOCTORTODIAGNOSISOFMAMMOGRAPHICMASSES,AMETHODISPROPOSED22FEATURESAREEXTRACTEDFROMEACHQUERIEDREGIONOFINTERESTROIAKNEARESTNEIGHBORKNNALGORITHMISUSEDTORETRIEVESIMILARIMAGESFROMDATABASE,ANDFURTHERCALCULATETHEMUTUALINFORMATIONMIBETWEENTHEQUERIEDIMAGEANDTHEIMAGESWHICHAREINTHERETRIEVALRESULTS,SOASTOIMPROVETHERETRIEVALPERFORMANCEFINALLY,THESCHEMETAKESTHEFIRSTNINEIMAGESWITHTHEHIGHESTMISCORESASTHEFINALRETRIEVALRESULTSWITHTHEPURPOSEOFPROVIDINGAVAILABLEDECISIONMAKINGINFORMATIONOFDIAGNOSTICAIDS,WECOMPAREANDANALYZETHREECALCULATINGMETHODSOFDECISIONINDEXTHEEXPERIMENTRESULTSSHOWTHATTHEMETHODISBETTERTHANMETHODOFUSINGKNNONLY,ANDIMPROVETHEACCURACYOFDIAGNOSISEFFECTIVELYKEYWORDSMAMMOGRAPHYIMAGE;CONTENTBASEDIMAGERETRIEVAL;COMPUTERAIDEDDIAGNOSIS;MUTUALINFORMATIONIINTRODUCTIONSCREENINGMAMMOGRAPHYISCONSIDEREDTHEMOSTRELIABLEANDEFFECTIVEMETHODINTHEEARLYDETECTIONOFBREASTCANCERHOWEVER,MAMMOGRAPHYIMAGEISBLURRYANDITSCONTRASTISLOWDUETOIMAGINGPRINCIPLE,MANYSMALLERLESIONSARENOTEASYTOBEOBSERVEDANDEXTRACTEDOWINGTOTHEONESWHICHHAVEBEENOVERWHELMEDBYTHENORMALBREASTTISSUETHEREFORE,EARLYDETECTIONANDDIAGNOSISOFBREASTCANCERRELIEDHEAVILYONTHERADIOLOGIST’SSUBJECTIVEVIEWSCOMPUTERAIDEDDETECTIONTECHNOLOGYPROVIDESANVALUABLE“SECONDREVIEW”1FORRADIOLOGISTSINTHEEARLYDETECTIONPROCESSOFBREASTCANCERTHETRADITIONALCADSYSTEMOFBREASTMASSESDETECTIONGENERALLYBASEDONARTIFICIALNEURALNETWORKTHEMETHODOFCONTENTBASEDIMAGERETRIEVALNOTONLYELIMINATEDTHEBURDENOFDESIGNINGANDTRAININGNEURALNETWORKCLASSIFIERS,BUTALSOMADEFULLUSEOFPASTDIAGNOSISOFBREASTMASSESOFTHEORIGINALEMPIRICALDATAACCORDINGLYITCANEFFECTIVELYHELPPHYSICIANSIMPROVETHEACCURACYOFTUMORDIAGNOSISALTHOUGHCBIRHASBEENAPPLIEDINANUMBEROFFIELDS,THEBREASTIMAGESWHICHARECHARACTERIZEDBYHIGHERRESOLUTION,BIGGERIMAGESIMILARITYANDMOREINFORMATIONAREDIFFERENTFROMOTHERSITISDIFFICULTTORETRIEVESIMILARIMAGEWITHTHESAMEPATHOLOGICALCHARACTERISTICSFROMIMAGELIBRARYITISTHEREFOREESSENTIALTOESTABLISHARETRIEVALSYSTEMWITHMEDICALPRACTICEMAMMOGRAPHYOFCBIRISSTILLASTUDYINGDIRECTIONSOMERESEARCHINSTITUTESHAVEBEENCARRIEDOUTRELEVANTRESEARCHBINZHENG2HASPROPOSEDANINTERACTIVERETRIEVALMETHODWHICHIMPROVEDTHEVISUALSIMILARITYBETWEENTHERESULTIMAGESANDTHEQUERIEDIMAGESGEORGIADTOURASSI3ADOPTEDMUTUALINFORMATIONASTHESIMILARITYMEASUREMENTAMONGIMAGES,CLASSIFIEDTHEREGIONOFINTERESTBYTHEMOSTSIMILARIMAGESOFRETRIEVALHILARYALTO4STUDIEDTHEVARIOUSCOMBINATIONSOFSHAPE,TEXTUREANDEDGESHARPNESSFEATURES,WHICHUSEDINCLASSIFYINGBENIGNANDMALIGNANTTUMORMASSESTOIMPROVETHERETRIEVALACCURACYANDACHIEVETHEDIAGNOSIS,THISPAPERSTUDIESACOMBINATIONOFKNNMIRETRIEVALMETHODOFBREASTMASSESDETECTION,ANDGIVESADECISIONINDEXOFAIDEDDIAGNOSISONTHEBASISOFTHISSTUDYIICONTENTBASEDMAMMOGRAPHICMASSESIMAGERETRIEVALAFTERSUBMITTINGAQUERIEDROIIMAGE,THESYSTEMWILLAUTOMATICALLYEXTRACT22FEATHERSWHICHMATCHTHEFEATHERSINTHEDATABASE,OBTAINSEVERALFRONTIMAGESACCORDINGTOTHESIMILARITYFROMHIGHTOLOW,ANDFINALLYCALCULATETHEDECISIONINDEXANDANALYZETHEPATHOLOGICALINFORMATIONOFMASSESACCORDINGTOTHERETRIEVALIMAGESANDTHEIRPATHOLOGICALINFORMATIONTHEOVERALLPROCESSOFTHEMETHODISSHOWNINFIG1FIGURE1THEDIAGRAMOFTHEOVERALLPROCESSFIG2SHOWSTHERESULTOFTHERETRIEVALTHEQUERIEDROIISINTHEUPPERLEFTANDTHEPATHOLOGICALINFORMATIONISTHEFOLLOWINGTHEFIRSTNINEROISAREINTHELEFTANDTHELETTERSABOVEEACHROIMEANCLASSES,“M”MALIGNANT,“B”BENIGNAFEATUREEXTRACTIONTHECONVENTIONALCONTENTBASEDRETRIEVALAIMEDATIMPROVINGVISUALSIMILARITYBETWEENTHERETRIEVALIMAGESANDTHEQUERIEDIMAGE,BUTTHEBREASTXRAYIMAGESAREVISUALLYVERYSIMILAR,SOFEATURESELECTIONPROCESSSHOULDNOTBEBASEDSOLELYONTHEVISUALSENSEOFTHESIMILARITIESDOCTORSALSOTEND9781424447138/10/25002010IEEETOLIKETHESAMEKINDOFIMAGESASTHESIMILARIMAGES,WHICHISTHESIMILARITYINTHEMEDICALSENSETHEREFORE,THISFEATURESELECTIONBASEDONTHEFOLLOWINGPRINCIPLESIFAFEATUREISVALIDINCLASSIFICATION,ITISALSOVALIDINRETRIEVALTHUS,THEMOREWHICHARETHESAMEWITHTHEQUERIEDIMAGESINTHERESULTS,THEMOREEFFECTIVETHERETRIEVALISFIGURE2THERESULTOFTHERETRIEVALAFTERTHEQUERYROITOBEOBTAINED,IFTOCALCULATETHERELEVANTCHARACTERISTICSOFASUSPICIOUSLUMP,THENITREQUIRESSEGMENTATIONOFSUSPICIOUSMASSESTHESEGMENTATIONOFSUSPICIOUSMASSESISDIVIDEDINTOTHREESTEPSINTHISTEST1REMOVETHE“BACKGROUNDTREND”5OFTHEQUERIEDROIIMAGE;2RESTRAINTHEADJACENTTISSUESOFSUSPICIOUSMASSES;3SEGMENTTHESUSPICIOUSMASSWITHTHEIMPROVEDMULTILAYERTOPOGRAPHICSEGMENTATION6AFTERTHAT,22FEATURESAREEXTRACTEDFROMEACHROIASTHEFEATHERSET,INCLUDINGBINZHENG’SETAL2TWELVEFEATHERS,NICHOLASPETRICK’S7SEVENFEATHERSANDRENCHAOJIN’S8THREEFEATHERSBSIMILARITYMEASUREMENTTHEIMAGESIMILARITYMEASUREISTHESIMILARITYBETWEENTHEIMAGEFEATURESTHESIMILARITYMEASUREMENTMETHODSWILLHAVEADIRECTIMPACTONTHEPERFORMANCEOFIMAGERETRIEVALTHISPAPERPROPOSESACOMBINATIONOFKNNWITHMISIMILARITYMATCHINGALGORITHM1KNEARESTNEIGHBORALGORITHMAMULTIFEATUREKNEARESTNEIGHBORKNNBASEDALGORITHMWASAPPLIEDTOSEARCHFORTHE“COMPUTATIONALLYSIMILAR”ROISINTHEREFERENCELIBRARYSIMILARITYWASMEASUREDBYTHEDIFFERENCEINFEATUREVALUES,RIFXBETWEENAQUERIEDQROIYANDAREFERENCEIROISXINAMULTIDIMENSIONALNFEATURESPACE,21,NQIRQRIRDYXFYFX−∑1THESMALLERTHEDIFFERENCE“DISTANCE”,THEHIGHERTHEDEGREEOFTHECOMPUTED“SIMILARITY”ISBETWEENANYTWOCOMPAREDREGIONSTHECOMPUTEDDISTANCESBETWEENATESTQUERIEDREGIONANDEACHOFTHESTOREDREFERENCEREGIONSWERESORTEDRANKORDEREDFROMTHESMALLESTTOTHELARGESTTHEFIRSTKREGIONSINTHELISTWERETHENSELECTEDASTHEK“MOSTSIMILAR”ORTHEBEST“MATCHED”REFERENCEREGIONSADISTANCEWEIGHTWASDEFINEDAS020201,,1,QIIDDDYXWDDD⎧⎪⎪⎨⎪≤⎪⎩ANDTHECLASSIFICATIONSCORE,ORTHEPROBABILITYTHATAREGIONISACTUALLYMALIGNANT,WASCOMPUTEDAS111MIIMNIJIJWPWW∑∑∑,KMN2WHERENISTHENUMBEROFMALIGNANTMASSREGIONSANDMISTHENUMBEROFBENIGNMASSREGIONSTHATWERESELECTEDINTHESETOFK“MOSTSIMILAR”ROIS2MAXIMUMMUTUALINFORMATIONMETHODTHERESULTSRETRIEVEDBYKNNMETHODAREFURTHERMATCHEDBYTHEMAXIMUMMUTUALINFORMATIONMETHOD,ANDTHEFINALRESULTISBETTERTHANOTHERSBYUSINGKNNONLYTHECORRELATIONBETWEENTWORANDOMVARIABLESENTROPY,ISALSOKNOWNASMUTUALINFORMATIONMUTUALINFORMATIONBETWEENTWORANDOMVARIABLESCANSERVEASASTATISTICALMEASUREOFCORRELATIONINTHEPREVIOUSSTUDY,IMAGERETRIEVAL,MUTUALINFORMATIONALSOHASBEENAPPLIEDTOCONTENTBASEDMEDICALIMAGERETRIEVAL,ANDHASACHIEVEDRELATIVELYGOODRESULTSGIVENTWOIMAGESXANDY,THEIRMIIX;YISEXPRESSEDAS2,,,LOGXYXYXYXYPXYIXYPXYPXPY∑∑3WHEREPXYX,YISTHEJOINTPROBABILITYDENSITYFUNCTIONPDFOFTHETWOIMAGESBASEDONTHEIRCORRESPONDINGPIXELVALUESPXXANDPYYARETHEMARGINALPDFSTHEBASICIDEAISTHATWHENTWOIMAGESAREALIKE,THEMOREINFORMATIONXPROVIDESFORYANDVICEVERSATHEREFORE,THEMICANBETHOUGHTASANINTENSITYBASEDMEASUREOFIMAGESSIMILARITYIFTHEQUERYIMAGEXANDASTOREDIMAGEYDEPICTSIMILARSTRUCTURES,THENTHEPIXELVALUEINIMAGEXSHOULDBEAGOODPREDICTOROFTHEPIXELVALUEATTHECORRESPONDINGLOCATIONINIMAGEYCONSEQUENTLY,THEIRMISHOULDBEHIGHASSHOWNINEQ3,THEMIESTIMATIONOFTWOMAMMOGRAMPHICROISREQUIRESCOMPUTATIONOFTHEJOINTANDMARGINALPDFSWEFOLLOWEDTHEHISTOGRAMAPPROACH9FORTHETASKSINCETHEIMAGESOFDIGITALDATABASEFORSCREENINGMAMMOGRAPHYDDSMCONSIDEREDINOURSTUDYARE12BITIMAGES,THEPDFSWEREESTIMATEDUSINGAREDUCEDNUMBEROF256EQUALSIZEDINTENSITYBINSTOAVOIDPOTENTIALOVERESTIMATIONERRORS10THISISATYPICALPRACTICEFORMIESTIMATIONINIMAGEREGISTRATIONCDECISIONINDEXBESIDESTHERETRIEVEDROIIMAGES,THEDECISIONINDEXDIINDICATINGTHERELATIVEPROBABILITYTHATAROICONTAINSAMASSCANBECALCULATEDAUTOMATICALLYWITHAFORMULAANDOUTPUTTOTHEUSERAHIGHERDIVALUEMEANSAHIGHERPROBABILITYTHATTHEROICONTAINSAMASSTHEFORMULAFORCALCULATINGTHEDIISBASEDONTHEMETHODSPROPOSEDBYGEORGIADTOURASSIETAL31211{,1}{,1}{,1}MQIIIQMNQIIQJJIJSYXKRXDIYSYXKRXSYXKRX−−−∑∑∑4WHEREMISTHENUMBEROFIMAGESRETRIEVEDFROMTHEDATABASETHOSECONTAINMASSROISNISTHENUMBEROFIMAGESRETRIEVEDFROMTHEDATABASETHOSECONTAINNORMALROISKMNRANKXIISTHEORDERINGNUMBEROFXIWHENTHERETRIEVEDROIIMAGESARESORTEDINDESCENDINGORDERITCANBESEENTHATFOREITHERMETHOD,THEHIGHERDIMEANSAHIGHERPROBABILITYTHATTHEROICONTAINSAMASSDI2CONSIDEREDTHEFACTOROFORDERINGNUMBEROFXIANDASSIGNEDARIGHTTOEACHOFSIMILARITYMEASUREVALUESANDITGIVESABETTERPERFORMANCEINOUREVALUATIONEXPERIMENTS,SOWETAKEITASOURINITIALDECISIONINDEXIIIEXPERIMENTALRESULTSANDANALYSISROIINTHEIMAGEDATABASECOMESFROMDDSMOFUNIVERSITYOFSOUTHFLORIDATHEROIDATABASEINCLUDES514MALIGNANTROISAND321BENIGNROISEACHROIISILLUSTRATEDINANIMAGEWITHSIZEOF125125PIXELSTHEDEPTHOFIMAGEIS12BITSEACHROICONTAINSATMOSTONEMASSNOMASSINTHEROIWEEXTRACTEDISONTHECHESTWALLRECALLRATEANDPRECISIONRATEISTHESTANDARDINFORMATIONRETRIEVALEVALUATIONMETHODTHENUMBEROFIMAGESRETURNEDKTAKESAVERYIMPORTANTEFFECTFORTHEPERFORMANCEOFKNNRETRIEVALSYSTEMTHEAVERAGEPRECISIONRATEWILLBECALCULATEDTOOBTAINANOPTIMALKVALUEFROMFIG3ITISCONCLUDEDTHATPRECISIONRATEISNOTMUCHDIFFERENTFORTHEDIFFERENTKVALUESHOWEVER,CONSIDERINGTHEMUTUALINFORMATIONMATCHINGFORTHERESULTS,THERELATIVELYSMALLANDTHEPRECISIONVALUESLIGHTLYHIGHKISSELECTED,K25FIGURE3THEAVERAGEPRECISIONOFDIFFERENTKVALUESATHRESHOLDVALUEISUSEDASADIVIDINGPOINTBETWEENBENIGNANDMALIGNANTMASSES,ANDTHEFIG4SHOWSTHEDISTRIBUTIONOFBENIGNANDMALIGNANTMASSESOFDECISIONVALUESINTHEDATABASETHEREISNOCLEARDEMARCATIONPOINTBETWEENTHEMASSESFROMTHEHISTOGRAMTHUS,ATHRESHOLDVALUESHOULDBEDEFINEDBETWEEN0AND1THE“ERRORRATE”ISDEFINEDBYTHENUMBEROFMALIGNANTROIOFDI<TANDTHENUMBEROFBENIGNROIOFDI≥T,ACCORDINGLYBYTHENUMBEROFWRONGDECISIONUNDERTITISCHANGINGWITHT,ANDCANBEFOUNDOUTBYEXHAUSTIVEATTACKMETHODFIGURE4THEHISTOGRAMOFDECISIONINDEXTHENARECEIVEROPERATINGCHARACTERISTICROCCURVECANBEPLOTTEDTOEVALUATETHEPERFORMANCEOFUSINGOURSYSTEMTOCLASSIFYBETWEENTRUEPOSITIVEANDFALSEPOSITIVEMASSREGIONSTHEAREAUNDERROCCURVEAUCVALUEISUSEDASTHEINDEXOFPERFORMANCETHELEAVEONEOUT11SAMPLINGSCHEMEANDTHEROCCURVEANALYSISAREUSEDFORTHEASSESSMENTOFOURSYSTEMEACHTIMEAROIIMAGEISCHOSENFROMTHEDATABASEFIGURE5THEROCCURVEOFTWOMETHODSINDIFFERENTDIESASTHEQUERYROIIMAGE,THENTHERESTROIIMAGESFORMATESTDATABASETHEPROCEDUREISPERFORMEDREPEATEDLY,EACHTIMEAROIIMAGEINTHEDATABASEISCHOSENASAQUERYIMAGEFIG5SHOWEDTHEROCCURVEOFTWOMETHODSINDIFFERENTDIESTABISHOWEDTHEAZVALUESOFTWOMETHODSINDIFFERENTDIESANALYSINGANDCOMPARINGTHISTHREEMETHODSDI1ADDSSOMEEFFECTSOFSIMILARIT
编号:201311062134373279    类型:共享资源    大小:348.34KB    格式:PDF    上传时间:2013-11-06
  
1
关 键 词:
外文资料 外文翻译
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:外文资料-- Diagnosis Technology Research Of Mammographic Masses in Content-based Image Retrieval.PDF
链接地址:http://www.renrendoc.com/p-93279.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

网站客服QQ:2846424093    人人文库上传用户QQ群:460291265   

[email protected] 2016-2018  renrendoc.com 网站版权所有   南天在线技术支持

经营许可证编号:苏ICP备12009002号-5