外文翻译--X射线实时影象探伤管道机器人的关键技术.doc_第1页
外文翻译--X射线实时影象探伤管道机器人的关键技术.doc_第2页
外文翻译--X射线实时影象探伤管道机器人的关键技术.doc_第3页
外文翻译--X射线实时影象探伤管道机器人的关键技术.doc_第4页
外文翻译--X射线实时影象探伤管道机器人的关键技术.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附录AX射线实时影象探伤管道机器人的关键技术摘要这篇论文介绍了一种检查大口径管道焊接连接的机器人系统,它被发展作为X射线实时图象检查法RTIIT的自动化平台。该机器人在管道内可以独立寻找并确定焊接接缝位置,在同步控制技术的控制下可以完成对焊缝进行质量检验的任务。该机器人系统安装有一个小的焦点和具有定向波束的X射线管,因此可以获得清晰度较高的焊接接缝图像。关于该机器人系统个别的关键技术也将被详细说明。它的结构是(?)。关键词:X射线探伤、实时影象、机器人0介绍与射线照相检查方法(RET)相比较,X射线实时图像检查法(RTIIT)有许多优势,比如较高的效率、较低的成本,更容易实现自动化和对焊接缺陷进行即时评估。此外,最新的技术允许X射线RTIIT被用在对管道进行无损检测(NDT),并且这个方法的检查品质和RET1,2是一样的。因此,无损检测设备,通常用于管道检验的基于RET的设备,需要通过改造变成基于X射线实时图像检查法的。使用X射线实时图像检查法对管道进行无损检测一定要有一个自动化平台,X射线探伤实时影象管道机器人(irtipr)就是为该目的而设计的。事实上,除了已经被解决的涉及X射线探伤实时影象管道机器人的问题之外,一些集中在机器人的智能控制的关键技术也出现在这篇论文中。,例如,机器人在管道内的独立动作,同步控制技术和在管道内外之间信息交流配合,我们也将机器人的结构(?)。1机器人的工作原理这个X射线探伤实时影象管道机器人由管道内和管道外两部分组成,结构详见图1。管道外的部分由图像采集处理系统(8,9,10),管道外同步旋转机构和它的驱动系统(11,12)组成。图像扩大器由管道外旋转机构来推动并围绕管道中心旋转进行采集焊接图像及通过图像采集卡将图象信号传达给图像处理计算机。管道内的部分由管道内电脑(1)、电源和换流器系统()、行走及其驱动系统()、X射线系统()、管道内同步旋转机构及其驱动系统(,6)和焊接接缝独立寻找及定位系统()。X射线系统中的X射线管由管道内的旋转机构推动围绕管道的中心旋转。图1X射线探伤实时影象管道机器人的结构机器人主要工作原理说明如下:在焊接接缝独立寻找及定位系统的控制下管内爬行器完成工作位置的定位,并在定位的位置上处于等待的状态。当它收到从管道外由低频电磁波传达的指令信号时,管道内的电脑立即操纵X射线系统的控制器来实现管道外的控制。管道内和管道外的旋转机构由同步控制技术控制围绕相同的管道中心旋转并按旋转-照射-旋转的方式完成焊接接缝检查。机器人的控制系统与工艺步骤的工作原理相比,X射线irtipr的控制系统主要由一些关键技术组成,例如以X射线图象标准检查程序为基础的同步控制技术和以数据合成及低频电磁波传递为基础的焊接接缝独立寻找及定位技术。2.1管道内和管道外旋转机构的同步控制技术根据X射线实时图象检查法的技术要求,X射线管和图像增强器必须围绕同时地同一个中心旋转。因为X射线irtipr采用无线的工作方式,机器人管道内同管道外的部分是不可能的由电缆连接着的。如何在管道内外旋转机构的控制系统之间实现同步信息通信,或如何实现同步控制,变成必须被解决的关键技术。同步旋转可以被描述为:当管道内的旋转机构带动X射线管到旋转角时,管道外的旋转机构也带动图像增强器同时绕同样的中心旋转到相同的角度(图2)。因为金属管道的遮挡作用和无线的特征,现有的通信手段很难完成在管道内外控制信息的通信(,5)。根据X射线探伤实时影象管道机器人的特殊性,我们提出这同步控制方案如下:将一个垂直于焊接接缝的标准检查程序导线设置在X射线管的照射窗上;当X射线照射到焊接接缝时,标准检查程序导线也在管道外的电脑上成像。只要管道内和管道外旋转机构处于同步的位置,即X射线管的照射窗和图像增强器的轴是重合的(=0)(图2),标准检查程序导线成像在电脑屏幕的中心位置。标准检查程序导线的成像和标准检查程序的中心线重合,看图3。当管道内旋转机构旋转角时,在屏幕上标准检查程序导线的成像偏离标准检查程序中心线,距离为H。距离H被用作管道外旋转机构控制系统的错误输入使调节自身旋转运动直到这距离H为零或小于指定值,管道外旋转机构同步动作可以被实现。试验和模拟证明以上同步控制技术是正确的。这种同步动作满足X射线探伤实时影象管道机器人的技术要求。这种方法以X射线当做观测信号源,管道内和管道外的旋转机构同步动作信息通过X射线图象的标准检查程序导线偏离标准检查程序中心线距离确定,从而执行同步动作.这种方法已经申请发明专利。图2同步旋转机构图3X射线图象的标准检查程序导线焊接接缝的独立寻找及定位技术独立寻找并定位意味着在管道内机器人没有任何其他干涉仅借助于传感器自动地决定哪里是工作位置.这种控制方式就是“智能控制”。寻找及定位系统的精确度和可靠性与机器人是否可以实现在管道内独立行动有直接关系。如果这个系统是无效的,机器人将在管道中“死亡”或“迷路”6。大略地说,检测焊接位置接缝方法如下:(1)利用编码器或圆弧测定器;()利用焊接接缝表面伸出凹面变化的位移所引起位移;()利用焊缝表面接缝导电;()利用放射性同位素(比如射线信号源);()利用观测;()利用低频电磁波。因为这种方法受许多因素的影响,例如:行进时刹车、管道内的环境、人为的因素、放射性的伤害、定位的精确度和效率,仅仅使用一种方法是不能获得满意效果的。考虑到焊接接缝的规则排列,即每个焊接接缝的间距大约12m,和各种位置检测方法优点和缺点,以多种成象设备为基础的焊接接缝独立寻找及定位系统被提出来改善和提高精确度、效率和可靠性的局限。多种成象设备由圆弧测定器、CCD摄像机和低频电磁波的接收器和发射极组成。系统的框图如图4。图4焊接接缝独立寻找并定位系统系统采用定位反馈来提高定位的效率。反馈成像构成的视觉反馈系统实现精确的定位。合成数据以三种测量数据为基础,圆弧测定器的数据、低频电磁波以及图象,使用优先估计算法处理数据。根据三种定位法的特征,上述数据在不同的范围分别地有效。如果x1表示圆弧测定器的测量数据,x2是低频电磁波,x3是图象。X表示机器人在管道的内实际位置,各个焊接接缝的间距是12m。那么,三种测量数据的有效作用范围如下:x1,12m;x20.1m,1m;x3-10cm,10cm,最后的定位目标是x3=0.三种测量数据有效范围描述如下:当距离x1相距焊接接缝位置是大于100cm时,使用圆弧测定器是为了提高定位效率,并且机器人在管道内以高速移动;当数据x2是小于100cm时,控制器变成低频电磁波,并且让机器人以低速度移动;当焊接接缝进入这图象范围时,采用图象伺服系统获得精确的定位。数据合成规律可以表示为:X=X1如果(x3-10)且(x310),那么X=x3;以上方法实现了模糊控制并且完美地解决了精确度以及定位效率之间的矛盾。定位精确度的测试结果在3毫米内,可以满足这设计要求。低频电磁波的传递除了定位的作用,低频电磁波还被利用于传送管道内外部分之间的开关信号。考虑它的危险,X射线系统经从管道外遥控操纵。因为这机器人是无线的以及考虑到金属管道的遮挡作用,其他的方法不能完成管道内外部分之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论