土木外文翻译--高温下钢筋混凝土中钢筋的性能_第1页
土木外文翻译--高温下钢筋混凝土中钢筋的性能_第2页
土木外文翻译--高温下钢筋混凝土中钢筋的性能_第3页
土木外文翻译--高温下钢筋混凝土中钢筋的性能_第4页
土木外文翻译--高温下钢筋混凝土中钢筋的性能_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

外文原文RESEARCHLETTERSINMATERIALSSCIENCEVOLUME20082008,ARTICLEID814137,4PAGESDOI101155/2008/814137RESEARCHLETTERPROPERTIESOFREINFORCEDCONCRETESTEELREBARSEXPOSEDTOHIGHTEMPERATURESİLKERBEKIRTOPUANDCENKKARAKURTDEPARTMENTOFCIVILENGINEERING,ESKIEHIROSMANGAZIUNIVERSITY,26480ESKIEHIR,TURKEYRECEIVED12FEBRUARY2008ACCEPTED31MARCH2008ACADEMICEDITORRAJIVSMISHRACOPYRIGHT2008İLKERBEKIRTOPUANDCENKKARAKURTTHISISANOPENACCESSARTICLEDISTRIBUTEDUNDERTHECREATIVECOMMONSATTRIBUTIONLICENSE,WHICHPERMITSUNRESTRICTEDUSE,DISTRIBUTION,ANDREPRODUCTIONINANYMEDIUM,PROVIDEDTHEORIGINALWORKISPROPERLYCITEDABSTRACTTHEDETERIORATIONOFTHEMECHANICALPROPERTIESOFYIELDSTRENGTHANDMODULUSOFELASTICITYISCONSIDEREDASTHEPRIMARYELEMENTAFFECTINGTHEPERFORMANCEOFSTEELSTRUCTURESUNDERFIREINTHISSTUDY,HOTROLLEDS220ANDS420REINFORCEMENTSTEELREBARSWERESUBJECTEDTOHIGHTEMPERATURESTOINVESTIGATETHEFIREPERFORMANCEOFTHESEMATERIALSITISAIMEDTODETERMINETHEREMAININGMECHANICALPROPERTIESOFSTEELREBARSAFTERELEVATEDTEMPERATURESSTEELSWERESUBJECTEDTO20,100,200,300,500,800,AND950CTEMPERATURESFOR3HOURSANDTENSILETESTSWERECARRIEDOUTEFFECTOFTEMPERATUREONMECHANICALBEHAVIOROFS220ANDS420WEREDETERMINEDALLMECHANICALPROPERTIESWEREREDUCEDDUETOTHETEMPERATUREINCREASEOFTHESTEELREBARSITISSEENTHATMECHANICALPROPERTIESOFS420STEELWASINFLUENCEDMORETHANS220STEELATELEVATEDTEMPERATURES1INTRODUCTIONFIREREMAINSONEOFTHESERIOUSPOTENTIALRISKSTOMOSTBUILDINGSANDSTRUCTURESSINCECONCRETEISWIDELYUSEDINCONSTRUCTION,RESEARCHONFIRERESISTANCEOFCONCRETEBECOMESMOREANDMOREIMPORTANTMANYRESEARCHERSALLOVERTHEWORLDHAVEDONESOMERESEARCHESONTHISSUBJECTTHEMECHANICALPROPERTIESOFALLCOMMONBUILDINGMATERIALSDECREASEWITHELEVATIONOFTEMPERATURETHEBEHAVIOROFAREINFORCEDCONCRETESTRUCTUREINFIRECONDITIONSISGOVERNEDBYTHEPROPERTIESOFTHECONSTITUENTMATERIALS,CONCRETE,ANDSTEEL,ATHIGHTEMPERATUREBOTHCONCRETEANDSTEELUNDERGOCONSIDERABLECHANGEINTHEIRSTRENGTH,PHYSICALPROPERTIES,ANDSTIFFNESSBYTHEEFFECTSOFHEATING,ANDSOMEOFTHESECHANGESARENOTRECOVERABLEAFTERSUBSEQUENTCOOLING1ITISNECESSARYTOHAVESAFE,ECONOMICAL,ANDEASILYAPPLICABLEDESIGNMETHODSFORSTEELMEMBERSSUBJECTEDTOFIREHOWEVER,WITHOUTFIREPROTECTION,STEELSTRUCTURESMAYSUFFERSERIOUSDAMAGEOREVENCOLLAPSEINAFIRECATASTROPHETHISISBECAUSETHEMECHANICALPROPERTIESOFSTEELDETERIORATEBYHEATDURINGFIRES,ANDTHEYIELDSTRENGTHOFCONVENTIONALSTEELAT600CISLESSTHAN1/3OFTHESPECIFIEDYIELDSTRENGTHATROOMTEMPERATURE2THEREFORE,CONVENTIONALSTEELSNORMALLYREQUIREFIRERESISTANTCOATINGTOBEAPPLIED3THETEMPERATUREINCREASEINTHESTEELMEMBERISGOVERNEDBYTHEPRINCIPLESOFHEATTRANSFERCONSEQUENTLY,ITMUSTBERECOGNIZEDTHATTHETEMPERATUREOFTHESTEELMEMBERSWILLNOTUSUALLYBETHESAMEASTHEFIRETEMPERATUREINACOMPARTMENTORINTHEEXTERIORFLAMEPLUMEPROTECTEDSTEELWILLEXPERIENCEAMUCHSLOWERTEMPERATURERISEDURINGAFIREEXPOSURETHANUNPROTECTEDSTEELALSO,FIREEFFECTONSTEELMEMBERISINFLUENCEDWITHITSDISTANCEFROMTHECENTEROFTHEFIRE,ANDIFMOREVENTILATIONOCCURSNEARTHESTEELINAFUELCONTROLLEDCONDITION,WHEREINTHEVENTILATIONHELPSTOCOOLTHESTEELBYDISSIPATINGHEATTOTHESURROUNDINGENVIRONMENT4ESPECIALLY,TEMPERATUREINCREASEOFSTEELANDCONCRETEINCOMPOSITESTEELCONCRETEELEMENTSLEADSTOADECREASEOFMECHANICALPROPERTIESSUCHASYIELDSTRESS,YOUNGSMODULUS,ANDULTIMATECOMPRESSIVESTRENGTHOFCONCRETE5THUS,LOADBEARINGOFSTEELDECREASESWHENSTEELORCOMPOSITESTRUCTUREISSUBJECTEDTOAFIREACTIONIFTHEDURATIONANDTHEINTENSITYOFTHEFIREARELARGEENOUGH,THELOADBEARINGRESISTANCECANFALLTOTHELEVELOFTHEAPPLIEDLOADRESULTINGINTHECOLLAPSEOFTHESTRUCTUREHOWEVER,THEFAILUREOFTHEWORLDTRADECENTREON11THSEPTEMBER2001AND,INPARTICULAR,OFBUILDINGWTC7ALERTEDTHEENGINEERINGPROFESSIONTOTHEPOSSIBILITYOFCONNECTIONFAILUREUNDERFIRECONDITIONS6INTHISSTUDY,S220ANDS420RIBBEDCONCRETESTEELREBARSWERESUBJECTEDTO7DIFFERENTTEMPERATURESTODETERMINETHEHIGHTEMPERATUREBEHAVIOROFREINFORCEMENTSTEELS2EXPERIMENTALSTUDYEXPERIMENTALSTUDIESWERECONDUCTEDWITH10AND16MMINDIAMETERAND200MMINLENGTHS220ANDS420REINFORCEMENTSTEELREBARSTESTSPECIMENSWERESUBJECTEDTO20,100,200,300,500,800,AND950CTEMPERATURESINAHIGHFURNACEFOR3HOURS,RESPECTIVELYATTHEENDOFTHECURINGPROCESS,STEELSWERECOOLEDNATURALLYTOTHEROOMTEMPERATURESUBSEQUENTLY,TENSILETESTSWEREAPPLIEDTOSTEELREINFORCEMENTREBARSACCORDINGTOEN100021TENSILESTRENGTH,YIELDSTRENGTHANDELONGATIONOFTHESTEELREBARSWEREDETERMINEDFORELEVATEDTEMPERATURES7THESTEELSPECIMENSTENSILESTRENGTHTESTSWEREPERFORMEDWITH60TONSOFLOADINGCAPACITYUNIVERSALTENSILESTRENGTHTESTMACHINETHELOADINGSPEEDOFTHETESTMACHINEISADJUSTEDACCORDINGTOTS708CODE83TESTRESULTSANDEVALUATIONS31STRESSSTRAINRELATIONSTHEAVERAGEVALUESFORSTRESSSTRAINRELATIONSHIPFORSPECIMENSTHATWEREEXPOSEDTOVARIOUSTEMPERATURESAREGIVENINFIGURES1AND2THECURVESINFIGURES1AND2WEREDRAWNWITHTHEAVERAGETESTRESULTSOF10AND16MMINDIAMETERSTEELSPECIMENSTHETESTCONDITIONSWEREMEANTTOSIMULATEABUILDINGTHATHADAFIRESOTHECHANGESINTHEMECHANICALPROPERTIESOFREINFORCINGSTEELSUSEDINSTRUCTURESEXPOSEDTOHIGHTEMPERATURECOULDBEDETERMINEDASSEENFROMFIGURE1,TEMPERATURESBELOW500CHAVENOSIGNIFICANTEFFECTONMECHANICALPROPERTIESOFPREHEATEDANDCOOLEDS220STEELREBARSTHEYIELDSTRENGTHANDSPLITTINGTENSILESTRENGTHSOFS220STEELSWERESIMILARUPTOTHISTEMPERATUREHOWEVER,THEYIELDSTRENGTHANDSPLITTINGTENSILESTRENGTHOFTHES220STEELREBARSAREREDUCINGWITHTHEINCREASEOFTEMPERATURESOVER800CASIMILARBEHAVIORCANBESEENFROMTHETESTRESULTSOFS420RIBBEDSTEELREBARSFIGURE2ALLHIGHTEMPERATURESUBJECTEDSTEELSPECIMENSBECAMEMOREDUCTILETEMPERATURESABOVE800CFIGURE1STRESSSTRAINCURVEOFS220STEELREBARFIGURE2STRESSSTRAINCURVEOFS420RIBBEDSTEELREBAR32YIELDSTRENGTHYIELDSTRENGTHOFBOTHREINFORCINGSTEELREBARSWASAFFECTEDWITHTHEELEVATEDEXPOSURETEMPERATURESITCANBECONCLUDEDFROMFIGURE3THATTHEREISNOVARIATIONINYIELDSTRENGTHOFREINFORCINGSTEELSWITHCOVERUPTO300CPLAINREINFORCINGSTEELREBARSHAVEEXPERIENCEDTHESTRAINHARDENINGALREADYFORTHISTEMPERATUREACCORDINGTOEUROCODEANDTSEN1993,BEFORE400CTHEREISNODECREASEINYIELDSTRENGTH,BUTAFTERTHISTEMPERATUREASIGNIFICANTYIELDSTRENGTHLOSSOCCURS9THEYIELDSTRENGTHLOSSESOFBOTHS220ANDS420STEELREBARSWERE46AND84FOR800CEXPOSURETEMPERATURE,RESPECTIVELYFORFURTHERINCREASEOFTEMPERATUREAT950C,YIELDSTRENGTHDECREASESWERE64AND89,RESPECTIVELYACCORDINGTOTHESERESULTS,THEREMAININGYIELDSTRENGTHOFS220STEELREINFORCINGREBARISHIGHERTHANS420RIBBEDSTEELREBARAFTERHIGHTEMPERATUREEXPOSUREFIGURE3YIELDSTRENGTHOFSTEELREBARSAGAINSTTEMPERATURE33TENSILESTRENGTHTHETENSILESTRENGTHVARIATIONOFSTEELREINFORCEMENTREBARSEXPOSEDTOELEVATEDTEMPERATURESISGIVENINFIGURE4ONTHELIGHTOFTHESERESULTS,THEREWASNOSIGNIFICANCEREDUCINGOFTENSILESTRENGTHFORBOTHTYPESOFSTEELREBARSUPTO500CTEMPERATURETHETENSILESTRENGTHLOSSESOFBOTHS220ANDS420STEELREBARSWERE51AND85FOR800CEXPOSURETEMPERATURE,RESPECTIVELYFORTHEHIGHESTEXPOSURETEMPERATUREAT950C,TENSILESTRENGTHDECREASESWERE60AND90,RESPECTIVELYACCORDINGTOTHESERESULTS,THEREMAININGTENSILESTRENGTHOFS220STEELREINFORCINGREBARISHIGHERTHANS420RIBBEDSTEELREBARAFTERHIGHTEMPERATUREEXPOSUREHOWEVER,ITSHOULDBECONSIDEREDTHATTHEPOSSIBILITYOFCOMPLETESTRENGTHLOSSOFSTEELREBARSATHIGHTEMPERATURESWHENASTRUCTUREISSUBJECTEDTOAHUGEFIRETHEREMAININGSTRENGTHSOFBOTHREINFORCINGSTEELREBARSAFTER500CARELOWERTHANTHEDESIGNSTRENGTHSOFTHESESTEELSCONSEQUENTLY,THEREMAININGSTRENGTHOFTHESTEELREBARSINSTRUCTURESISINFLUENCEDWITHTHEEXPOSURETIMEANDTYPEOFFIREDEPENDINGONTHEHEATTRANSFERTHROUGHCONCRETECOVERTOSTEELPARTS10FIGURE4TENSILESTRENGTHOFSTEELREBARSAGAINSTTEMPERATURE34ELONGATIONTHERELATIONBETWEENHIGHTEMPERATUREANDSPLITTINGELONGATIONRATIOCANBESEENFROMFIGURE5THEFIGUREISDEMONSTRATEDTHATBOTHSTEELREBARSSHOWASAMEELONGATIONBEHAVIORUNDERELEVATEDTEMPERATURESTHEELONGATIONRATIOSOFS220STEELREBARSAREHIGHERTHANS420REBARSDEPENDINGONTHEDUCTILEFRACTUREBEHAVIOROFTHISSTEELAFTERAFIREINSIDETHEREINFORCEDCONCRETEBUILDING,THEDEFLECTIONSOFTHESTRUCTURALMEMBERSINCREASEWITHTHEDUCTILEBEHAVIOROFTHESTEELREINFORCEMENTATHIGHTEMPERATURESFIGURE5ELONGATIONRATIOSOFSTEELREBARSAGAINSTTEMPERATURETHEELONGATIONRATIOSWERESLIGHTLYINCREASEDUPTO300C,HOWEVER,ABOVETHISTEMPERATUREMATERIALBECOMESBRITTLEWITHDECREASEOFTHEELONGATIONVALUESTHEELONGATIONLOSSESOFBOTHS220ANDS420STEELREBARSWERE12AND16FOR800CEXPOSURETEMPERATURE,RESPECTIVELYFORFURTHERINCREASEOFTEMPERATUREAT950C,ELONGATIONRATIOSDECREASESWERE16AND33,RESPECTIVELYACCORDINGTOTHESERESULTS,THEELONGATIONCAPACITYOFS420STEELISLOWERTHANS220STEELUNDERELEVATEDTEMPERATURESTHES420STEELSHOWEDABRITTLEFRACTUREBEHAVIORUNDERELEVATEDTEMPERATURESTHISBEHAVIORISNOTSUFFICIENTFORREBARSTEELINREINFORCEDCONCRETESTRUCTURES35TOUGHNESSTHEENERGYABSORBENTCAPACITYOFMATERIALSUSEDINCONSTRUCTIONSHOULDBEHIGHERAGAINSTDYNAMICEARTHQUAKELOADSTHEFRACTUREENERGYOFMATERIALSISDEFINEDWITHTHETOUGHNESSCONCEPTTHETOUGHNESSVALUESOFTHESTEELREBARSUSEDINEXPERIMENTALSTUDIESAREGIVENINFIGURE6ACCORDINGTOTESTRESULTS,THETOUGHNESSVALUESOFBOTHTYPESOFSTEELSWEREDECREASEDAFTERELEVATEDTEMPERATUREEXPOSUREHOWEVER,UPTO300C,THETOUGHNESSVALUESWEREINCREASEDDUETOTHEDUCTILEBEHAVIOROFBOTHSTEELSTHETOUGHNESSLOSSESOFBOTHS220ANDS420STEELREBARSWERE16AND35FOR800CEXPOSURETEMPERATURE,RESPECTIVELYFORFURTHERINCREASEOFTEMPERATUREAT950C,TOUGHNESSDECREASESWERE82AND88,RESPECTIVELYFIGURE6TOUGHNESSOFSTEELREBARSAGAINSTTEMPERATURE4CONCLUSIONSASDESCRIBEDINTHEPREVIOUSSTUDIES,STEELSTRUCTURALMEMBERSLOOSESTRENGTHUNDERELEVATEDTEMPERATURESINTHISSTUDY,THEMECHANICALPROPERTIESOFSTEELREBARSWEREINVESTIGATEDWHICHEXPOSEDTOHIGHTEMPERATURESANDCOOLEDTOROOMTEMPERATUREACCORDINGTOTESTRESULTS,THEMOSTCOMMONREINFORCINGSTEELREBARS420SHOWEDABRITTLEFRACTUREMECHANISMUNDERELEVATEDTEMPERATURESSPLITTINGYIELDSTRENGTH,TENSILESTRENGTH,ELONGATION,ANDTOUGHNESSVALUESWERELOWFORS220STEELTHESERESULTSDEMONSTRATETHATS220TYPEOFSTEELREBARISLESSAFFECTEDTHANS420STEELUNDERELEVATEDTEMPERATURESTHEAUTHORSSUGGESTTHATTHEPROTECTIVECOVERTHICKNESSSHOULDBEHIGHERFORINCREASINGTHEFIRESAFETYOFREINFORCEDCONCRETEMEMBERS中文翻译高温下钢筋混凝土中钢筋的性能摘要处于高温环境的钢结构,屈服强度和弹性模量这两项机械指标的恶化被认为是影响其性能的主要因素。在这项研究中,热轧钢筋S220和S420将处于高温环境下以此探究这些材料的耐火性能。它的目的是确定经受高温的钢筋剩下的力学性能。钢受到20、100、200、300、500、800和950C温度并进行三小时的拉伸试验。得出了温度对S220和S420两种材料的影响结果。由于温度的升高,钢筋的所有机械性能都减弱了。而且能够看到S420钢材比S220钢材更容易受到温度的影响。1简介火是大多数建筑和结构的隐患。由于混凝土在工程中的广泛应用,关于混凝土耐火性能的研究变的越来越重要了。世界上的许多研究人员已经对该项目做出了研究。所有一般建筑材料的机械性能随着温度的升高会下降。钢筋混凝土结构在高温条件下的反应主要受构成材料,混凝土,钢筋性能控制。混凝土和钢筋受高温的影响其力学,机械性能会受到很大的影响,并且这种影响在冷却后是无法修复的。找到一种使钢材耐高温的安全,经济,容易实施的方法是必要的。然而,钢结构在没有耐火措施的情况下在一场火灾中会遭受严重的损毁甚至瓦解。这是因为在火灾条件下受热导致钢材的机械性能恶化。在600C高温下,普通钢筋的区服强度还不及室温下钢筋屈服强度的三分之一。因此,普通钢筋一般需要涂膜防火。钢材中温度的升高主要受温度传递的控制。总之,必须意识到钢材的温度不会总和火焰的温度一样。耐火处理后的钢材其暴露在火焰环境下温度是上升速度会比不做耐火处理的钢材慢的多。同样的,高温对钢材的影响程度受其到火源距离的影响,在一个受控于燃料的环境下如果钢材附近有通风设备,那么通风设备会帮助冷却钢材,将热量带到其周围的环境中去。尤其是在复合钢筋混凝土原件中,钢筋和混凝土温度的升高会导致诸如屈服应力,杨氏模量,和混凝土极限抗压强度这些机械性能的下降。此外,当钢筋或复合结构承受高温时,钢筋的承载能力会下降。如果火的持续时间和强度足够大,其荷载抵抗能力会降到与外部荷载相当的水平,从而导致结构的破坏。然而,2001年911事件美国世贸大厦的倒塌尤其是WTC7楼的倒塌向工程专业发出了警告,揭示出建筑倒塌与高温条件的关联。在这个研究中,S220和S420两种钢材会经受七种不同的温度,以此来得出钢筋对于高温的反应。2实验性研究实验性研究会分析直径为10MM和16MM,长200MM的S220和S420钢筋,测试试样会放在温度分别为20,100,200,300,500,800和950C的火炉中三个小时。在固化过程的结尾,钢筋会被自然的回复到室温。随后,将对这些钢筋进行抗拉强度试验。根据EN100021,钢筋在温度升高条件下的抗拉强度,屈服强度和伸长率是已经确定的。钢筋试样的抗拉强度测试由60吨一般抗拉强度测试机器进行。测试机器的荷载施加速度按照TS708CODE。3测试结果和评估31应力应变关系实验中不同温度下样本的应力应变关系均值已表示在图形1和2中。图形1和2中的曲线是通过直径为10和16的钢筋试样的平均试验值绘制的。该实验条件旨在模仿建筑遭受火灾时的状况,所以高温环境下结构中的钢筋的机械性能也就能够确定了。就像图形1中所表示的那样,低于500C的温度对于预热并冷却的S220钢筋的机械性能并没有太大的影响。S220钢筋的屈服强度和劈裂抗拉强度在这些温度下是相似的。然而,当温度上升至800C以上时,S220钢筋的屈服强度和劈裂抗拉强度会出现下降。相似的反应同样发生在S420钢筋的实验结果中。暴露在高温下的钢筋在温度上升至800C以上时其延性会上升。FIGURE1STRESSSTRAINCURVEOFS220STEELREBARFIGURE2STRESSSTRAINCURVEOFS420RIBBEDSTEELREBAR图1S220钢筋的应力应变曲线图2S420钢筋的应力应变曲线32屈服强度两种钢筋的屈服强度都受到了外界温度升高的影响。从图形3中我们可以总结出钢筋的屈服强度在300C以内的条件下并没有太大的变化。光圆钢筋的机械加工中已经经历过这种温度。根据EUROCODE和TSEN1993,在400C前,屈服强度没有太大的降低,但在这个温度以后,会出现一个明显的屈服强度损失。暴露在800C温度下,S220和S420钢筋各自的屈服强度损失分别为46和84。当温度进一步升高到950C时,屈服强度的损失将各自达到64和89。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论