




全文预览已结束
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12thIFToMMWorldCongress,Besanon(France),June18-21,2007RevealingofIndependentOscillationsinPlanetaryReducerGearowingtoitssymmetryL.Banakh*Yu.Fedoseev+MechanicalEngineeringResearchInstituteofRussianAcademyofSciencesMoscow,RussiaAbstract-Theplanetaryreducer11gearisasymmetricsystem.Foritsoscillationanalysisthereisappliedthesymmetrygrouprepresentationtheory,whichwasgeneralizedformechanicalsystems.Itwasfoundthatduetoreducersymmetrytheoscillationsdecompositionhasarisen.Thereareindependentoscillationsclasses,suchas:angularoscillationsofsolargearandepicycle-satellitesoscillationsinphase;transversaloscillationsofsolargearandepicycle-satellitesoscillationsinantiphase.Solargearandepicycleoscillationsinaphasedonotdependonangularsatellitesoscillations.Keywords:planetaryreducer,symmetry,grouprepresentationtheory,independentoscillationsI.IntroductionItiswellknownthatattheoperationofplanetaryreducerthereareoscillationsofitselements,suchassolargear,epicycleandsatellites.Thisfactoressentiallyworsensaqualityofreduceroperation,andinsomecasescanresultintheircurvatureandbreakage.Aplentyofpapersaredevotedtothedynamicanalysisofgearreducers1.Basicallytherearecomputationalresearches.Inthegivenpapertheanalyticalapproachesforinvestigationofreducerdynamicsispresented.Theplanetaryreducerhasahighdegreeofsymmetry.Sothispropertywasusedandthegrouprepresentationtheorywasapplied.Applicationofthistheoryallowscarryingoutdeepenoughdynamicanalysis,usingsymmetrypropertiesonly.Forthispurposeitisnecessarytohavethedynamicalmodelwhichistakingintoaccountstiffnesscharacteristicsinlinkagesbetweenreducerelements.Themathematicalapparatusofthesymmetrygroupsrepresentationtheoryiswidelyusedinthequantummechanics,crystallographic,spectroscopy2,3,4.Theadvantagesofthisapproacharedifficultforoverestimating.Withitshelpitispossibletodefinewithexhaustivecompletenessthedynamicproperties,usingstructuresymmetryofsystemonlywithoutsolvingofmotionequations.Howeverintheclassicalmechanicsthisapproachisnotwidelyused.Itisresultfromsomeparticularfeaturesofmechanicalsystems.First,thereisan*E-mail:banlinbox.ruavailabilityofsolidswith6-thdegreesoffreedom.Itisuncleartowhatsymmetrygrouptorelateasolidinorderthatsystemsymmetrymayberetained.Secondatrealdesignsmaybetechnologicalerrorsandmistakesatassembly,sothereisasmallasymmetryandthesystembecomesquasisymmetricFurtherthemechanicalsystemsconsistfromvarioussubsystemswithvarioussymmetrygroups.Inthisconnectionitisnecessarytohavemethodsfortheanalysisassymmetricandquasisymmetricmechanicalsystemsconsistingofvarioussubsystemsandsolids.Havingmadesomegeneralizations,thismathematicalapparatusformechanicalsystemsmaybeused.Forthispurposeweproposetoapplythegeneralizedprojectiveoperators5.Theseoperatorsarematrixesoftheappropriateorderinsteadofscalarasinphysics.Theuseofgeneralizedprojectiveoperatorsallowstakingintoaccountallabovementionedfeaturesofmechanicalsystems.Theapplicationoftheseoperatorstoinitialstiffnessmatrixleadstoitsdecompositiononindependentblockseachofthemcorrespondstoownoscillationclassinindependentsubspaces.Toaccountforthesolidssymmetrytheequivalentpointswereentered:thesepointsarechosenonsolidsothattheirdisplacementswerecompatibletoconnectionsandcorrespondedtogroupofsymmetryofallsystem.Theseoperatorsenablealsomaybeappliedwiththefiniteelementsmodels(FEM).II.Dynamicmodelofplanetaryreducer.Stiffnessmatrix.Themodelofaplanetaryreducerstepissubmittedonfig.16.ThestepconsistsfromsolargearS,itsmassandradiusareequalto11,mr.ItengagesintomeshwiththreesatellitesSti(i=1,2,3)(itsmassesandradiusareidenticalandequalto22,mr).SatellitesinturnareengagedintomeshwithepicycleEp(33,mr)andtheyarefastenoncarrierbyelasticsupportwithrigidityh6.Therigidityofgearingsolargear-satellitesisequalto1h,thegearingepicycle-satellitesis3h,isangleofgearing.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Fig.1Planetaryreducerstep.S-solargear,-epicycle,1,2,3satellites(St).Letsconsideralloveragaintheplaneoscillationsofplanetaryreducerstep:transversal(x,y)andangular()oscillations(withoutthecasing).AstiffnessmatrixmayberepresentedinablockviewK=123123123SSStSStSStStStStStStStKKKKKKKKKKK(1)Hereonthemaindiagonaltherearethestiffnesssubmatrixes(3x3)forappropriateelements,andoutsideofthemaindiagonaltherearestiffnesssubmatrixesofconnectionbetweentheseelements.Thereare15generalizedcoordinates:X=(*,;,SSSEpEpEpxyxy;1113,.StStStStxy)TheconcreteviewoftheseblocksissubmittedinAppendix.Thus,thetotalorderofmatrixKis(15x15).AninertiamatrixMisdiagonal.III.Introductionofequivalentpointsindynamicmodel.Operatorsofsymmetry.Byvirtueofsymmetryofsatellitesfasteningthissubsystemhassymmetrysuchas3C(astriangle).Torevealsymmetry3CatmovingofsolargearSandepicycleEpweshallenterthecoordinates123,lllonsolargearSinpointsofsatellitesfastening(fig.2.).Fig.2EquivalentpointsonsolargearS.1,2,3,-satellitesTheyare“equivalentpoints”.Theircoordinatesare:1111222133312(1)cos3;2(1)sin31,2,3.SSiSSiSSirXriripipi=(2)orinmatrixformL=AXAndanaloguesrelationsfor“equivalentpoints”onepicycle,butinstead1rin(2)mustbewritten3r.Andlateronthesecoordinateofsolargearandepicyclewillbeusedinstead(x,y)and().Afterthatitispossibletocount,thatallcoordinatesofsystemshouldvaryaccordingtosymmetrygroup3Cand,hence,itispossibletoapplytheprojectiveoperatorofsymmetrytoallsystemelements:S,Ep,andalsotothreesatellitesSti(i=1,2,3).(fig.3)Theortho-normalprojectiveoperatorgofsymmetryforpointgroup3Cisknownas2.Itisg=11133312166611022(3)Forthewholesystemtheprojectiveoperatormustberepresentedasblock-diagonalmatrix12thIFToMMWorldCongress,Besanon(France),June18-21,2007G=Stggg(4)HereeachsubmatrixcorrespondstoS,Ep,andalsotothreesatellitesSti(i=1,2,3).SoBecausewehavethreeidenticalsatellitesandeachofthemhas3degreesoffreedom(,iiStStxyandangular.iiStSt),thereforeitisnecessarytoentergeneralizeoperator(3)3,4andtoconsiderStgasblockmatrixwheretheeachelementisdiagonalmatrix(33),thatisitispossibletopresenteachelementasStg=1,11=EgEEEThustoinitialcoordinates,(,)SEpxyofsolargearandepicycleconsistentlytwotransformationsareapplied:AandG.AndresultingtransformationofaninitialmatrixKequalstoproductofoperatorsGA.ThisorthogonaltransformationanditlookslikeG=StgAgAg,wheregA=223300100+Byapplyingofthistransformationtomatrix(1),weshallreceive*=(G)()(G)trSothecorrespondingtransformationsofcoordinatesandforcesareX*=(G),F*=(G)trF(5)AsaresulttheinitialmatrixK(1515)isdividedon3independentblocks(5x5)and,lookinglike,*(1)*(2)=IIIIIKKKK(6)TheinertiamatrixMremainsdiagonalbecausematrixGAisorthogonal;thereforetheindependenceofoscillationclassesdefinesmatrix*only.IV.RevealingofindependentmotionsclassesatfornaturalandforcedoscillationsA.NaturaloscillationsFromtheviewofmatrix(6)itisseen,thatowingtosystemsymmetrythereisadecompositionofinitialmatrixK,and,hence,divisionofoscillationclassesandaswellasspaceofparameters.Theconcreterelationsforsubmatrixesin(6)showthattherearefollowingindependentoscillationsclasses:I-stclass(subspaceI-submatrix*IK):angularoscillationofsolargearandepicycle+oscillationsofsatellitesinaphase.Dimensionofthissubspaceisequalto5.Itsdeterminingparametersare:12313612139,.rrrhhhhrh2-ndclass(subspaceII-submatrixes*(1)IIK(2)*IIK):transversaloscillationsofsolargearandepicycle+oscillationsofsatellitesinanantiphase.SubspaceIIbreaksuptotwoidenticalsubmatrixes*(1)IIKand(2)*IIK(55).Itmeansthatinsystemthereare5equalfrequencies.Itsdeterminingparametersare:213679,.rhhhhhThus,takingintoaccountonlypropertiesofsymmetryitispossibletoreceivedeepenoughanalysisofdynamicpropertiesofsystemofaplanetaryreducer.Besidesitispossibletosimplifyalsoprocessofsystemoptimization.B.ForcedoscillationsAttheforcedoscillationstheuseoftheindependentoscillationclassesissuitableonlyintwocases:a)ifthepointsofapplicationoftheexternalforceshavethesametypeofsymmetry,asadesignhas,orb)iftheyaredisposedaccordingtotheindependentclassesofoscillations.Really,thentransformation(5)bringaforcesvectorF*intoaformcontainingzeroelementsorin1-st,or2-thsubspaces.Theanalysisoftherealloadingsforcesonareducer,shows,thatitisvalidifelementsdisbalancesarethesame:)identicalsatellitesdisbalances+disbalanceofepicycle;)identicalsatellitesdisbalances+disbalanceofsolargear.V.Thefurthermotionsdecomposition.ThefurtherdecompositionofsubspacesIandIIin(6)ispossibleonlyifthereareadditionalconditionsraisingatypeofsystemsymmetry.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Theseconditions,inparticular,canbereceivedfromsimilaritysymmetryofsolargearandepicycle.Theylooklike:1.EqualityofgearingstiffnesswithSandEp,i.e.12hh=,2.EqualityofpartialfrequenciesforangularmotionsSandEp()()SEp=,whence:78hh=,or3.EqualityofpartialfrequenciesattranversalmotionsofSandEp(,)(,)SEpxyxy=,whence:h7=2h9.Sobyfulfillmentofconditions1,2(or1,3)theadditionalsymmetrytype2Cisappeared(reflectionsymmetry).Tothissymmetrygrouptheoperator2G(or2G)iscorresponded2G=11311113;1311rhrh2G=111113213112hhTheapplicationoftheseoperatorstomatrixK*permittoachievethefurtherdecompositionofcorrespondingmatrixesandappropriatemotions.Reallytheymayhavesymmetricandantisymmetricoscillationclassesforsolargearandepicycle.Thusthecoordinatetransformationis:111*3131111*3131SEprrhSEprrh=+=XXXXXXAnd1*3121*312SEphSEph=+=XXXXXXBythiscoordinatetransformationthefollowingindependentmotiontypesarearisen()*()IIIKKKTheconcreterelationsforthesesubmatrixesshowthattherearefollowingindependentoscillationsclasses:Isubspace(matrix*IK):-angularoscillationsofsolargearSandepicycleEpinphase+satellitesS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作境外回国管理办法
- 煤炭产品定价管理办法
- 煤炭贸易过程管理办法
- 煤矿原煤煤质管理办法
- 煤矿基建管理暂行办法
- 煤矿死亡名额管理办法
- 煤矿运输环节管理办法
- 燃料质量预警管理办法
- 牧场财务管理办法规定
- 物业分等定级管理办法
- 幼儿园中班语言教案《顽皮的小雨滴》含反思
- 2023年北京理工附中小升初英语分班考试复习题
- NY/T 455-2001胡椒
- GB/T 5585.1-2005电工用铜、铝及其合金母线第1部分:铜和铜合金母线
- GB/T 20470-2006临床实验室室间质量评价要求
- 《沙盘游戏与大学生心理治疗》课程教学大纲
- FZ/T 12001-2006气流纺棉本色纱
- 丁类(D类)功率放大器
- 论湖湘传统文化与大学生思政教育之间的融合优秀获奖科研论文-1
- DB23T 3104-2022 油田含油污泥处置与利用污染控制要求
- (0059)船舶货运保险理赔答疑手册
评论
0/150
提交评论