




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
angularChinaReceived5September2008Accepted17January2009AvailableonlinexxxxKeywords:AZ31magnesiumalloyEqualchannelangularextrusionFiniteelementmethodfinegrainedmicrostructuresinmagnesiumalloys.Itiscrucialtounderstandtheeffectofdiedesignontoobtainthesematerialswithhighstrengthandtoughness.InECAE,aworkpieceispressedthroughadiethatcontainstwochan-nelswithequalcross-sectionmeetingatanangle.Becausethecross-sectionoftheworkpieceremainsthesameduringextrusion,theprocesscanberepeateduntiltheaccumulateddeformationreachesadesiredlevel.Highstraincanbeachieved.FiniteelementmethodisoneoftheimportantapproachestounderstandtheofbackpressurebySonetal.,theoptimumdiedesignforhomoge-neousplasticdeformationbyYoonSCetal.7.However,thesestudiesassumedtwo-dimensional(2D)approximationofplanestrainconditionanddonotdiscusstheinhomogeneityofstressandstrain.Resultsobtainedby2Danalysisgivelimitedinforma-tion,inadditiontotheinherent2Dapproximationerrors.Someresearchers810haveexploredtheECAEprocessusingthree-dimensions(3D)plasticitytheoreticandsimulationsoft-ware.LuisPrezandLuri11usedupperboundmethodtoanalyzeinthree-dimensionsECAEdiesforrectangularorsquarecross-sec-*Correspondingauthor.Fax:+862368851783.MaterialsandDesignxxx(2009)xxxxxxContentslistsavailableandARTICLEINPRESSE-mailaddress:(H.-J.Hu).1.IntroductionUltra-finegrainedmaterialshavebeenwidelyinvestigatedduetotheirimprovedmechanicalpropertiessuchashighstrengthandductility.Varioustechniqueshavebeendevelopedtoobtainultra-finegrainedmaterials.Severeplasticdeformation(SPD)tech-niques,likeequalchannelangularextrusion(ECAE),highpressuretorsion(HPT),cyclingchanneldiecompression(CCDC)andaccu-mulativerollbonding(ARB)aremostcommonlyforproducingsubmicrongrainstructuresinmetallicmaterialsatarelativelylowcost.Amongthem,theequalchannelangularextrusion(ECAE),originallydevelopedbySegal,isoneofthemosteffectivemethodsdeformationoccurringintheECAEprocess.ManyFEM-basedanal-yseshavebeenperformedtodeterminethedeformationbehaviorofmaterialsandtoestimatethedevelopedstrainintheECAPpro-cess.TheseresearchworkincludetheeffectofchannelangleandoutercornerforfrictionlessconditionbyRaghavanS1,theeffectofchannelangleandoutercornerbyKimetal.,theeffectofoutercorneroninhomogeneitybySuhJ-Yetal.2,thecornergapfor-mationanditseffectbyKimandKim3,theeffectofchannelan-gleandcornerangleonmaterialflowbyLangandShyong4,theextensiveworkondifferentmaterialmodels,outercornerangleandcoefficientoffrictionbyLeeSCetal.5,theworkonoriginofinhomogeneousbehaviorofmetalbyWeietal.6,theeffectOutercornerangleDeformationinhomogeneity0261-3069/$-seefrontmatterC2112009Publishedbydoi:10.1016/j.matdes.2009.01.022Pleasecitethisarticleinpressas:HuH-J(2009),doi:10.1016/j.matdes.2009.01.022thedeformationbehavior,straindistributionandloadrequirement.Inthepapernewthree-dimensional(3D)geometricmodelswithdifferentcornerangles(90C176,120C176)andwithorwithoutinnerroundfilletsinthebottomdieweredesigned.SomeimportantprocessparameterswereregardedastheinitialandboundaryconditionsusedinDEFORMTM-3Dsoftwaresuchastemperaturesofthedieandbillet,thefric-tioncoefficient,etc.Toensuretheconvergenceofthesimulation,thegeometricalanddisplacementcon-ditionsandreasonableconvergenceerrorlimits,etc.havebeenconsidered.ThedeformationheterogeneityofECAEwasanalyzedfromthesimulationandexperimentalresults.Thedeformationhomogeneitycausedbyfilletsatoutercornerwasimprovedcomparingwiththediewithoutfillets.ThecumulatemaximumstrainsdecreasedwiththefilletsofoutercornermanufacturedinECAEdieandtheinnercorneranglesincreasing.TherequirementextrusionforcedecreasedwiththefilletsmadeatoutercornerangleinECAEdie.TheanalysesshowedthatbetterstructuresofECAEdieincludedappro-priateoutercornerfilletsandtheinnercornerangle90C176.Itwasdemonstratedthatthepredictedresultswereingoodagreementwithexperimentsandthetheoreticalcalculationandtheresearchconclusionsfromotherliteratures.C2112009PublishedbyElsevierLtd.Articlehistory:Equalchannelangularextrusion(ECAE)iswidelyinvestigatedbecauseofitspotentialtoproduceultra-Thediestructuredesignofequalchannelmagnesiumalloybasedonthree-dimensionalHuHong-Juna,*,ZhangDingFeia,b,YangMingBocaNationalEngineeringResearchCenterforMagnesiumAlloys,ChongqingUniversity,ChongqingbCollegeofMaterialsScienceandEngineering,ChongqingUniversity,Chongqing400045,cCollegeofMaterialsScienceandEngineering,ChongqingInstituteofTechnology,ChongqingarticleinfoabstractMaterialsjournalhomepage:www.elseElsevierLtd.etal.ThediestructuredesignextrusionforAZ31finiteelementmethod400044,China400050,ChinaatScienceDirectD/locate/matdesofequalchannelangularextrusionforAZ31.JMaterDesigntionwherebothinternalandexternalradiiweretakenintoac-countandtheintersectionanglewasmade.The3DsimulationanalysisofECAPwasperformedbyChungetal.12usingacom-mercialfinitevolumemethod(FVM)codetoanalyzetheeffectivestrainandstressforonepassoftheprocess.3DFEMwasappliedtoanalyzethecommercialpureTi(CP-Ti)billetsubjectedtofour-passNomenclatureUtheinnercornerangle(C176)estrain(mm/mm)eccriticalstrain(mm/mm)Wtheoutercornerangle(C176)2H.-J.Huetal./MaterialsandDesignARTICLEINPRESSECAEprocessat400C176CwithBcrouteinRef.13.Buttherewerefewresearchersadopted3DsimulationtechnologiestoinvestigatethedeformationbehaviorsofmagnesiumAZ31especiallytheinfluencesofdiestructuresonstraindistributionsandextrusionquality.ManyoftheearlystudiesofECAPwerelimitedtothepro-cessingofsoftpuremetalsorsolidsolutionalloys.Morerecently,significantattentionhasbeendevotedtothepressingofmorecomplexalloysandsomemetalswithlimitednumbersofslipsys-temsespeciallyformagnesiumalloys.Forthesedifficult-to-workmaterials,threedifferentstrategieshavebeenadoptedwiththeoverallobjectiveofachievingsuccessfulprocessingbyECAE.Cur-rentresearchinterestisintheprocessingtoobtainfine-grainedbulkmagnesiumalloyspecimensfromECAE1420.AsketchofsuchanECAEdieisshowninFig.1.Thebottomdieconsistsoftwointersectingchannelsofthesamecross-sectionmeetingataninnercornerangleU(seeFig.1).Inthisfigure,thean-gleWdefinestheoutercurvatureoftheintersectionbetweenthetwochannels.Inthiscontext,theuseoftheextremeprinciples,forinstance,theupperboundmethodhasgainedalotofattentiontoestimatethepressureneededfortheplungeraswellastheaccu-mulatedeffectivestrainresultingfromtheECAEmethod.Thenumericalsimulationwiththehelpofthefiniteelementmethod(FEM)hasbeenextensivelyusedtobetterunderstatingtheECAEmethod2125.TheplasticdeformationbehaviorduringECAEisgovernedmainlybythediegeometry,thematerialitselfandtheprocessingconditions.ExperimentaldataandfiniteelementstudyofdiesgeometryinfluenceonECAEprocesshimselfarepresented.ItisnecessarytotheoreticallymodeltheECAEprocessinordertostudyvariouscomplicatedeffectsforbetterprocesscontrol.Thisstudyistonumericallyanalyzethedeformationbehaviorsinequalchannelangularextrusions(ECAE)ofmagnesiumalloyAZ31andpredictthestrainsandextrusionforcesofECAEtoformnanostructureprocessbasedonvariousdiestructures.Fig.1.SchematicdiagramofanECAPdieshowinginnercornerangle(U)andoutercornerangle(w).Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022Inthepresentwork,aquasi-staticsolutiontotheECAEmethodbytheFEMsimulationwascarriedoutusingdieswithintersectinganglesU=90C176and120C176byonlyonepassofextrusion.ThefourECAEmodelshavebeenerectedinUGsoftwareandmeshedandsimulatedinDEFORMTM-3Dcode.Numericalsimulationproceduresandmodelingofthediesandbillet,boundaryconditions,conver-genceerrorlimitsfordeformationsimulationsandelementformu-lationshavebeenintroduced.TheeffectsofdifferentdiegeometriesonthedeformationinhomogeneityduringECAPwereinvestigated.ExperimentsfortwoECAEdieswithorwithoutfilletshavebeendoneinlaboratorytovalidatethesimulationresults.Be-causetheevolutionofthemicrostructuresandmechanicalproper-tiesofdeformedmaterialaredirectlyrelatedtotheamountofplasticdeformation,theunderstandingofthephenomenonassoci-atedwiththestraindevelopmentisveryimportantinECAE.Distri-butionsofeffectivestressandstrain,influencesofchannelangleonthedeformationindifferentzonesanddeformationhomogeneity,maximumstrainhavebeendiscussedindetail.2.MaterialmodelsandsimulationdetailsThecommercialFEMcode,DEFORM3DVersion5.0,wasusedtocarryoutthesimulationofone-passECAEprocess.2.1.AssumptionsandnumericalsimulationproceduresAwroughtmagnesiumalloyAZ31with3%aluminum,1%zincwasusedasthebilletmaterialbothincomputersimulationandexperimentalverification.Thenumericalsimulationswereper-formedquasi-staticallyusingacommercialfiniteelementcode(DEFORMTM-3D).DEFORMTM-3Dwasacommercialpackagedevel-opedbySFTC(ScientificFormingTechnologyCorporation).Itwasafiniteelementmethod(FEM)basedprocesssimulationsystemdesignedtoanalyze3Dflowofvariousmetal-formingprocesses.Itprovidedvitalinformationaboutmaterialandthermalflowdur-ingformingprocesses.Thebilletwasassumedtobeelasticplasticmaterial.Thefollowingassumptionswasadoptedinpresentanal-ysis:(1)boththecontainerandthediearerigidbodies;(2)theextrusionbilletwasarigid-plasticmaterial;and(3)thefrictionfactorsbetweentheextrusionbilletandtheram,container,anddiewereconstant.Thesimulationprocedureswereasfollows:(1)the3Dgeome-tries(billets,ramsanddies)achievedbyconstructing3DCADmodelsweredefinedinUnigraphicssoftware.Geometriescanbedefinedas3DIGESorSTLfiles.(2)Stoppingstrokewasset,theRradiusoftheinnercorner(mm)_eeffectivestrainrate(sC01)xxx(2009)xxxxxxnumberofstepsdefinedandsimulationmodeandEnglishorSIunitswereselected.(3)Theobjects(billetsanddies)weremeshed.Theobjectswerepositioned,withtheworkpieceasthereferenceobject;bothtoolsandramincontactwiththeworkpiece.Thematerialspropertiesweredefined.(4)Thermalboundarycondi-tionsweredefined.(5)Objectstemperatureswereinitialized.(6)Contactboundaryconditionsweregeneratedandfrictioncoeffi-cientsbetweenbilletsanddies,billetsandramsweredefined.(7)Rammovementparameters(directionandspeed)wereas-signed.(8)Thedatabasewascheckedandgeneratedandcalcu-lated,FEAtosimulatethehotextrusionprocesswasperformed.(9)Thesimulationresultswerereadfromthepostprocessor.ofequalchannelangularextrusionforAZ31.JMaterDesign2.2.ModelingofthediesandramsThediegeometriesusedinthesimulationsareshowninFig.2.Thebilletcoordinateaxis(xyz)employedinthepresentstudyisshowninFig.2.Thex-,y-andz-directionswereparalleltoextru-siondirection(ED),verticaldirection(ND)andtransversedirection(TD),respectively.ThechannelanglesU=90C176andU=120C176areconsideredandillustratedrespectivelyinFig.2aandbandthecor-nerangle(W)ofthediesareassumedtoequalto0.ThemodifiedgeometricmodelswithinnerroundfilletsattheoutercornerareshowninFig.2candd.ThegeometricalparametersofthefourECAEdiesforFig.2arelistedinTable2.Thechannelanglecornerradiusattheintersectionofthetwochannelswas2mmandoutercornerangleradiuswas18mm.Thelengthofinletchannelwas50mmandoutletchannellengthwas25mm.Boththeinletandoutletchannelshadthesamedimensionsofsquarecross-section(16mm).Table3givesthedimensions,extrusionspeedandtemperatureusedincomputersimulation,etc.,whichareidenticaltothoseap-pliedinextrusionexperiments.Thespeedofram(moveddownalongtheinletchannel)was10mmsC01asinthesimulationsandexperiments.Thestrokeoframwas50mm.Forthesakeofsimplicity,thediesandpressingramwereas-sumedtoberigidbodiesthatundergonopermanentdeformation,whichmechanicalpropertiesemployedanH13toolsteelwiththeYoungmodulusandthermalconductiondependentonthetemper-atureshowninFig.3aandb.Poissonsratio(m)was0.3.Fourdis-tinctgeometricmodelshavebeenanalyzedby(finiteelementTable2ThegeometricalparametersoftheECAEdie.U(C176)W(C176)RrFig.3a90000Fig.3b99182Fig.3c120000Fig.3d12060182Table3Simulationandexperimentalparameters.Billetlength(mm)50Billetdiameter(mm)16insiderdiameterofECAEdie(mm)16outsidediameterofdie(mm)50Initialbillettemperature(C176C)300Initialtoolingtemperature(C176C)275Strainraterangeforflowstressmeasurement(sC01)0.0110Temperaturerangeforflowstressmeasurement(C176C)250450Ramspeed(mm/s)10Frictionfactorofthecontainerbilletinterface0.25Frictionfactorbetweenthebilletanddie0.25H.-J.Huetal./MaterialsandDesignxxx(2009)xxxxxx3ARTICLEINPRESSFig.2.Schematicdiagramsofthethree-dimensionalECAPdieFEMmodelingshowing:(a)channelangleequalto90C176;(b)channelangleequalto120C176;(c)channelangle90C176withoutercornerangle;(d)channelangle120C176withoutercornerangle,whererdenotestheradiusofthechannelangle,Rtheradiusoftheoutercornerangle.Table1PhysicalpropertiesoftheAZ31workpiece.PropertyAZ31Poissonsratio0.35Coefficientoflinearexpansion26.8EC06Density1780kg/m3Poissonsratio0.35Youngsmodulus45,000MPaEmissivity0.12Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022Fig.3.ThematerialpropertiesforH13.ofequalchannelangularextrusionforAZ31.JMaterDesignanalysis)FEAtorevealthedeformationbehaviorsandtheirrela-tionshipwiththedesignconfiguration.2.3.ModelingofthebilletThemagnesiumbilletusedinthecalculationswasaroundcross-section(diameter16mm)andalengthof50mm(16mmC250mm).TheAZ31wasconsideredasanisotropicelasticplasticmaterial.Thetensilestressstraincurveat300C176CofAZ31billet(annealedat400C176Cfor12h),asshowninFig.4,theflowstress/straindataobtainedfromtheuniaxialcompressiontestswereintroducedintoFEAusingcommercialsoftwarepack-agesDEFORMTM-3D.TheelasticpropertieswereYoungsmodulusE=45GPaandPoissonsratiom=0.3.Materialpropertyparame-tersoftheAZ31workpiecearelistedinTable1.2.4.MeshingmethodInallsimulations,anautomaticremeshingschemewasusedto4H.-J.Huetal./MaterialsandDesignARTICLEINPRESSaccommodatelargestrainsandtotakeintoaccounttheoccurrenceofflowlocalization,whichpreventedfurthercalculationduringthesimulation.Theelementswereautomaticallyremeshediftheybe-cametoodistortedduringECAEsimulationprocess.Alltheextrusiontoolingincludedinthesimulationwasmeshedwithtetrahedralelementsanditsheatexchangewiththework-pieceincorporatedintosimulation.ThesimulationparametersusedarelistedinTable3.Toenhancetheefficiencyofsimulationandobtainspecificresolutionsintheareasofparticularinterest,anumberofwindowswithanincreasedelementdensitywereap-pliedtogeneratelocalfinerelements,especiallyaroundthechan-nelcornerfordie.Toensuresimulationaccuracyandstability,theabsolutemeshdensitywasusedtokeeptheelementsizeatanypositionnearlyconstantduringthesimulation,becauseitwasthisdensitythatdefinedthenumberofelementsperunitlengthonthesurfaceoftheworkpiece.Theminimumsizeoftheelementwas0.250.35mm.Thebilletwasdividedinto20,000four-nodetetra-hedralelements.Totalnumberofelementsoframanddiewere8000and20,000,respectively.Thenumbersofelementswerefoundtobesufficienttoexpresslocaldeformationofthestrainrateinsensitiveworkpiecesthroughcalculationswithvaryingthenum-berofelements.Tolimitthesizesofsimulationdatabasefilesandenhancesimulationspeed,theroundextrudatewascutoffatthelengthof50mmwhenitslengthexceeded50mm.Asmallrelativeinterferencedepthof0.3wasdefinedtotriggertheremeshingpro-Fig.4.Truestress/truestraincurvesofAZ31obtainedfromcompressiontestsat300C176Cunderdifferentstrainrateandcorrectedfordeformationheatingduringthetesting.Pleasecitethisarticleinpressas:HuH-Jetal.Thediestructuredesign(2009),doi:10.1016/j.matdes.2009.01.022cedurewhenanyelementattheedgeoftheworkpiecehadbeenpenetratedintoandthepenetrationdepthexceeded30%oftheori-ginallengthofthesurfaceedgethathadacontactnodeateachend.2.5.Boundaryconditions2.5.1.ContactandfrictionboundaryconditionsContactboundaryconditionswereappliedtonodesofbillet,andspecifycontactbetweenthosenodesandthesurfaceofram.InordertoassurethequadraticconvergenceoftheNewtonRaph-sonmethodusedinthecode,thecompressivedisplacementsim-posedonthebillettopregionintheverticaldirectionwerefixedinincrementsof0.10mmuptoatotaldisplacementof50mm.TheNewtonRaphsonmethodwasrecommendedformostprob-lemsbecauseitgenerallyconvergedinlessiterationthantheotheravailablemethods.However,solutionsweremorelikelytofailtoconvergewiththismethodthanwithothermethods.Torepresentthefrictionbehaviorasaconsequenceoftheshearstressandthecontactpressure,thegeneralizedCoulombslawwasused.Thefrictionattheworkpiecetoolinginterfaceswasconsid-eredtobeofshear-type.Itwaswellknownthatthislawstatedproportionalitybetweenshearyieldstre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水资源领域新质生产力发展
- 广东省广州2025年九年级上学期月考英语试题附答案
- 船舶电气系统设计优化方案分析报告
- 三年级数学计算专项训练试题与解析
- 高校科研项目经费管理及审计方案
- 跨境电商用户购物体验研究报告:2025年市场解读
- 客户合作与资源共享协议签订指南
- 医疗健康数据安全与隐私保护-洞察及研究
- 无纺布在电子产品中的应用-洞察及研究
- 智能化过渡相传感器应用-洞察及研究
- 幼儿园获奖公开课:中班语言活动《哈哈镜》课件
- 2025年中外合资企业合作框架协议模板
- 《餐饮点菜》课件
- 公司财务知到智慧树章节测试课后答案2024年秋北京第二外国语学院
- 2025年天马微电子股份有限公司招聘笔试参考题库含答案解析
- 2025年浙江事业单位联考真题解析历年高频重点提升(共500题)附带答案详解
- 防止人身伤亡事故培训课件(共139张)
- 宣传物料技术服务方案设计
- 检验科质量管理手册
- 幼儿园讲解海军知识
- 《中国货币发展史》课件
评论
0/150
提交评论