




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文DigitalImageProcessingandEdgeDetection1.DigitalImageProcessingInterestindigitalimageprocessingmethodsstemsfromtwoprincipalapplicant-ionareas:improvementofpictorialinformationforhumaninterpretation;andprocessingofimagedataforstorage,transmission,andrepresentationforau-tenuousmachineperception.Animagemaybedefinedasatwo-dimensionalfunction,f(x,y),wherexandyarespatial(plane)coordinates,andtheamplitudeoffatanypairofcoordinates(x,y)iscalledtheintensityorgrayleveloftheimageatthatpoint.Whenx,y,andtheamplitudevaluesoffareallfinite,discretequantities,wecalltheimageadigitalimage.Thefieldofdigitalimageprocessingreferstoprocessingdigitalimagesbymeansofadigitalcomputer.Notethatadigitalimageiscomposedofafinitenumberofelements,eachofwhichhasaparticularlocationandvalue.Theseelementsarereferredtoaspictureelements,imageelements,peels,andpixels.Pixelisthetermmostwidelyusedtodenotetheelementsofadigitalimage.Visionisthemostadvancedofoursenses,soitisnotsurprisingthatimagesplaythesinglemostimportantroleinhumanperception.However,unlikehumans,whoarelimitedtothevisualbandoftheelectromagnetic(EM)spec-trump,imagingmachinescoveralmosttheentireEMspectrum,rangingfromgammatoradiowaves.Theycanoperateonimagesgeneratedbysourcesthathumansarenotaccustomedtoassociatingwithimages.Theseincludeultra-sound,electronmicroscopy,andcomputer-generatedimages.Thus,digitalimageprocessingencompassesawideandvariedfieldofapplications.Thereisnogeneralagreementamongauthorsregardingwhereimageprocessingstopsandotherrelatedareas,suchasimageanalysisandcomputervi-son,start.Sometimesadistinctionismadebydefiningimageprocessingasadisciplineinwhichboththeinputandoutputofaprocessareimages.Webelievethistobealimitingandsomewhatartificialboundary.Forexample,underthisdefinition,eventhetrivialtaskofcomputingtheaverageintensityofanimage(whichyieldsasinglenumber)wouldnotbeconsideredanimageprocessingoperation.Ontheotherhand,therearefieldssuchascomputervisionwhoseultimategoalistousecomputerstoemulatehumanvision,includinglearningandbeingabletomakeinferencesandtakeactionsbasedonvisualinputs.Thisareaitselfisabranchofartificialintelligence(AI)whoseobjectiveistoemulatehumanintelligence.ThefieldofAIisinitsearlieststagesofinfancyintermsofdevelopment,withprogresshavingbeenmuchslowerthanoriginallyanticipated.Theareaofimageanalysis(alsocalledimageunderstanding)isinbe-teenimageprocessingandcomputervision.Therearenoclear-cutboundariesinthecontinuumfromimageprocessingatoneendtocomputervisionattheother.However,oneusefulparadigmistoconsiderthreetypesofcomputerizedprocessesinthiscontinuum:low-,mid-,andhigh-levelprocesses.Low-levelprocessesinvolveprimitiveopera-tonssuchasimagepreprocessingtoreducenoise,contrastenhancement,andimagesharpening.Alow-levelprocessischaracterizedbythefactthatbothitsinputsandoutputsareimages.Mid-levelprocessingonimagesinvolvestaskssuchassegmentation(partitioninganimageintoregionsorobjects),descriptionofthoseobjectstoreducethemtoaformsuitableforcomputerprocessing,andclassification(recognition)ofindividualobjects.Amidlevelprocessischaracterizedbythefactthatitsinputsgenerallyareimages,butitsoutputsareattributesextractedfromthoseimages(e.g.,edges,contours,andtheidentityofindividualobjects).Finally,higher-levelprocessinginvolves“makingsense”ofanensembleofrecognizedobjects,asinimageanalysis,and,atthefarendofthecontinuum,performingthecognitivefunctionsnormallyassociatedwithvision.Basedontheprecedingcomments,weseethatalogicalplaceofoverlapbetweenimageprocessingandimageanalysisistheareaofrecognitionofindividualregionsorobjectsinanimage.Thus,whatwecallinthisbookdigitalimageprocessingencompassesprocesseswhoseinputsandoutputsareimagesand,inaddition,encompassesprocessesthatextractattributesfromimages,uptoandincludingtherecognitionofindividualobjects.Asasimpleillustrationtoclarifytheseconcepts,considertheareaofautomatedanalysisoftext.Theprocessesofacquiringanimageoftheareacontainingthetext,preprocessingthatimage,extracting(segmenting)theindividualcharacters,describingthecharactersinaformsuitableforcomputerprocessing,andrecognizingthoseindividualcharactersareinthescopeofwhatwecalldigitalimageprocessinginthisbook.Makingsenseofthecontentofthepagemaybeviewedasbeinginthedomainofimageanalysisandevencomputervision,dependingonthelevelofcomplexityimpliedbythestatement“makingsense.”Aswillbecomeevidentshortly,digitalimageprocessing,aswehavedefinedit,isusedsuccessfullyinabroadrangeofareasofexceptionalsocialandeconomicvalue.Theareasofapplicationofdigitalimageprocessingaresovariedthatsomeformoforganizationisdesirableinattemptingtocapturethebreadthofthisfield.Oneofthesimplestwaystodevelopabasicunderstandingoftheextentofimageprocessingapplicationsistocategorizeimagesaccordingtotheirsource(e.g.,visual,X-ray,andsoon).Theprincipalenergysourceforimagesinusetodayistheelectromagneticenergyspectrum.Otherimportantsourcesofenergyincludeacoustic,ultrasonic,andelectronic(intheformofelectronbeamsusedinelectronmicroscopy).Syntheticimages,usedformodelingandvisualization,aregeneratedbycomputer.Inthissectionwediscussbrieflyhowimagesaregeneratedinthesevariouscategoriesandtheareasinwhichtheyareapplied.ImagesbasedonradiationfromtheEMspectrumarethemostfamiliar,esp.-especiallyimagesintheX-rayandvisualbandsofthespectrum.Electromagnet-icewavescanbeconceptualizedaspropagatingsinusoidalwavesofvaryingwavelengths,ortheycanbethoughtofasastreamofmasslessparticles,eachtravelinginawavelikepatternandmovingatthespeedoflight.Eachmasslessparticlecontainsacertainamount(orbundle)ofenergy.Eachbundleofenergyiscalledaphoton.Ifspectralbandsaregroupedaccordingtoenergyperphoton,weobtainthespectrumshowninfig.below,rangingfromgammarays(highestenergy)atoneendtoradiowaves(lowestenergy)attheother.ThebandsareshownshadedtoconveythefactthatbandsoftheEMspectrumarenotdistinctbutrathertransitionsmoothlyfromonetotheother.Imageacquisitionisthefirstprocess.Notethatacquisitioncouldbeassimpleasbeinggivenanimagethatisalreadyindigitalform.Generally,theimageacquisitionstageinvolvespreprocessing,suchasscaling.Imageenhancementisamongthesimplestandmostappealingareasofdigitalimageprocessing.Basically,theideabehindenhancementtechniquesistobringoutdetailthatisobscured,orsimplytohighlightcertainfeaturesofinterestinanimage.Afamiliarexampleofenhancementiswhenweincreasethecontrastofanimagebecause“itlooksbetter.”Itisimportanttokeepinmindthatenhancementisaverysubjectiveareaofimageprocessing.Imagerestorationisanareathatalsodealswithimprovingtheappearanceofanimage.However,unlikeenhancement,whichissubjective,imagerestorationisobjective,inthesensethatrestorationtechniquestendtobebasedonmathematicalorprobabilisticmodelsofimagedegradation.Enhancement,ontheotherhand,isbasedonhumansubjectivepreferencesregardingwhatconstitutesa“good”enhancementresult.ColorimageprocessingisanareathathasbeengaininginimportancebecauseofthesignificantincreaseintheuseofdigitalimagesovertheInternet.Itcoversanumberoffundamentalconceptsincolormodelsandbasiccolorprocessinginadigitaldomain.Colorisusedalsoinlaterchaptersasthebasisforextractingfeaturesofinterestinanimage.Waveletsarethefoundationforrepresentingimagesinvariousdegreesofresolution.Inparticular,thismaterialisusedinthisbookforimagedatacompressionandforpyramidalrepresentation,inwhichimagesaresubdividedsuccessivelyintosmallerregions.Compression,asthenameimplies,dealswithtechniquesforreducingthestoragerequiredsavinganimage,orthebandwidthrequiredtransmittingit.Althoughstoragetechnologyhasimprovedsignificantlyoverthepastdecade,thesamecannotbesaidfortransmissioncapacity.ThisistrueparticularlyinusesoftheInternet,whicharecharacterizedbysignificantpictorialcontent.Imagecompressionisfamiliar(perhapsinadvertently)tomostusersofcomputersintheformofimagefileextensions,suchasthejpgfileextensionusedintheJPEG(JointPhotographicExpertsGroup)imagecompressionstandard.Morphologicalprocessingdealswithtoolsforextractingimagecomponentsthatareusefulintherepresentationanddescriptionofshape.Thematerialinthischapterbeginsatransitionfromprocessesthatoutputimagestoprocessesthatoutputimageattributes.Segmentationprocedurespartitionanimageintoitsconstituentpartsorobjects.Ingeneral,autonomoussegmentationisoneofthemostdifficulttasksindigitalimageprocessing.Aruggedsegmentationprocedurebringstheprocessalongwaytowardsuccessfulsolutionofimagingproblemsthatrequireobjectstobeidentifiedindividually.Ontheotherhand,weakorerraticsegmentationalgorithmsalmostalwaysguaranteeeventualfailure.Ingeneral,themoreaccuratethesegmentation,themorelikelyrecognitionistosucceed.Representationanddescriptionalmostalwaysfollowtheoutputofasegmentationstage,whichusuallyisrawpixeldata,constitutingeitherthebound-rayofaregion(i.e.,thesetofpixelsseparatingoneimageregionfromanother)orallthepointsintheregionitself.Ineithercase,convertingthedatatoaformsuitableforcomputerprocessingisnecessary.Thefirstdecisionthatmustbemadeiswhetherthedatashouldberepresentedasaboundaryorasacompleteregion.Boundaryrepresentationisappropriatewhenthefocusisonexternalshapecharacteristics,suchascornersandinflections.Regionalrepresentationisappropriatewhenthefocusisoninternalproperties,suchastextureorskeletalshape.Insomeapplications,theserepresentationscomplementeachother.Choosingarepresentationisonlypar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防早恋班会课件图片
- 项目功能介绍课件
- 消防安全常识培训
- 2025年汽车功率转换器项目发展计划
- 2025年防沉剂项目合作计划书
- 2025年搅墨棒项目合作计划书
- 五年级数学上册期末测试卷提高卷(一)苏教版
- 捕鱼活动策划方案
- 2025年中心静脉导管项目合作计划书
- 常州宾馆冰蓄冷空调系统设计
- 2025年高考英语二轮复习专题08 非谓语动词(练习)(原卷版)
- 细胞生活的环境说课稿
- 野生菌中毒知识讲座
- 数据中心安全防护体系
- 2025年部编版小学一年级语文下册全册教案
- 《赞美技巧》课件
- 业委会 物业合同范本
- 充电桩售后合同范本
- 2025年青藏铁路集团有限公司招聘笔试参考题库含答案解析
- 2025四川遂宁发展投资集团限公司及直属企业招聘21人高频重点提升(共500题)附带答案详解
- 年中绩效总结报告
评论
0/150
提交评论