外文翻译--桥梁使用系统可靠性评估  英文版.pdf_第1页
外文翻译--桥梁使用系统可靠性评估  英文版.pdf_第2页
外文翻译--桥梁使用系统可靠性评估  英文版.pdf_第3页
外文翻译--桥梁使用系统可靠性评估  英文版.pdf_第4页
外文翻译--桥梁使用系统可靠性评估  英文版.pdf_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BridgeRatingUsingSystemReliabilityAssessment.II:ImprovementstoBridgeRatingPracticesNaiyuWang,M.ASCE1;BruceR.Ellingwood,Dist.M.ASCE2;andAbdul-HamidZureick,M.ASCE3Abstract:Thecurrentbridge-ratingprocessdescribedinAASHTOManualforBridgeEvaluation,FirstEditionpermitsratingstobedeterminedbyallowablestress,loadfactor,orloadandresistancefactormethods.Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostinglimitsforthesamebridge,asituationthathasseriousimplicationswithregardtopublicsafetyandtheeconomicwell-beingofcommunitiesthatmaybeaffectedbybridgepostingsorclosures.Thispaperisthesecondoftwopapersthatsummarizearesearchprogramtodevelopimprovementstothebridge-ratingprocessbyusingstructuralreliabilitymethods.Thefirstpaperprovidedbackgroundontheresearchprogramandsummarizedacoordinatedprogramofloadtestingandanalysistosupportthereliabilityassessmentleadingtotherecommendedimprovements.Thissecondpaperpresentsthereliabilitybasisfortherecommendedloadrating,developsmethodsthatcloselycoupletheratingprocesstotheresultsofinsituinspectionandevaluation,andrecommendsspecificimprovementstocurrentbridge-ratingmethodsinaformatthatisconsistentwiththeloadandresistancefactorrating(LRFR)optionintheAASHTOManualforBridgeEvalu-ation.DOI:10.1061/(ASCE)BE.1943-5592.0000171.2011AmericanSocietyofCivilEngineers.CEDatabasesubjectheadings:Concretebridges;Reinforcedconcrete;Prestressedconcrete;Loadfactors;Reliability;Steel;Ratings.Authorkeywords:Bridges(rating);Concrete(reinforced);Concrete(prestressed);Conditionassessment;Loads(forces);Reliability;Steel;structuralengineering.IntroductionTheAASHTOManualforBridgeEvaluation(MBE),FirstEdition(AASHTO2008)allowsbridgeratingstobedeterminedthroughthetraditionalallowablestressrating(ASR)orloadfactorrating(LFR)methodsorbythemorerecentloadandresistancefactorrating(LRFR)method,whichisconsistentwiththeAASHTOLRFDBridgeDesignSpecifications(2007).Thesethreeratingmethodsmayleadtodifferentratedcapacitiesandpostedlimitsforthesamebridge(NCHRP2001;Wangetal.2009),asituationthatcannotbejustifiedfromaprofessionalengineeringviewpointandhasimplicationsforthesafetyandeconomicwell-beingofthoseaffectedbybridgepostingsorclosures.Toaddressthisissue,theGeorgiaInstituteofTechnologyhasconductedamultiyearresearchprogramaimedatmakingimprovementstotheprocessbywhichtheconditionofexistingbridgestructuresinGeorgiaareassessed.Theendproductofthisresearchprogramissetofrecommendedguidelinesfortheevaluationofexistingbridges(Ellingwoodetal.2009).Theseguidelinesareestablishedbyaco-ordinatedprogramofloadtestingandadvancedfinite-elementmodeling,whichhavebeenintegratedwithinastructuralreliabilityframeworktodeterminepracticalbridge-ratingmethodsthatareconsistentwiththoseusedtodeveloptheAASHTOLRFDBridgeDesignSpecifications(AASHTO2007).Itisbelievedthatbridgeconstructionandratingpracticesaresimilarenoughinothernon-seismicareastomaketheinferences,conclusions,andrecommen-dationsvalidforlargeregionsinthecentralandeasternUnitedStates(CEUS).TherecentimplementationofLRFDanditscompanionratingmethod,LRFR,bothofwhichhavebeensupportedbystructuralreliabilitymethods,enablebridgedesignandconditionassessmenttobeplacedonamorerationalbasis.Notwithstandingthesead-vances,improvedtechniquesforevaluatingthebridgeinitsinsituconditionwouldminimizethelikelihoodofunnecessaryposting.Forexample,materialstrengthsinsitumaybevastlydifferentfromthestandardizedornominalvaluesassumedindesignandcurrentratingpracticesattributabletostrengthgainofconcreteononehandanddeteriorationattributabletoaggressiveattackfromphysi-calorchemicalmechanismsontheother.Satisfactoryperformanceofawell-maintainedbridgeoveraperiodofyearsofservicepro-videsadditionalinformationnotavailableatthedesignstagethatmightbetakenintoaccountinmakingdecisionsregardingpostingorupgrading.Investigatingbridgesystemreliabilityratherthansolelyrelyingoncomponent-basedratingmethodsmayalsobeofsignificantbenefit.Properconsiderationofthesefactorsislikelytocontributetoamorerealisticcapacityratingofexistingbridges.ThispaperisthesecondoftwocompanionpapersthatprovidethetechnicalbasesforproposedimprovementstothecurrentLRFRpractice.Thefirstpaper(Wangetal.2011)summarizedthecurrentbridge-ratingprocessandpracticesintheUnitedStates,andpresentedtheresultsofacoordinatedbridgetestingandanalysisprogramconductedtosupportrevisionstothecurrentratingpro-cedures.ThispaperdescribesthereliabilityanalysisframeworkthatprovidesthebasisforrecommendedimprovementstotheMBEandrecommendsspecificimprovementstotheMBEthataddresstheprecedingfactors.1SeniorStructuralEngineer,Simpson,Gumpertz,andHeger,Inc.,41SeyonSt.,Waltham,MA02453;formerly,GraduateResearchAssistant,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology.2Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355(correspondingauthor).E-mail:3Professor,SchoolofCivilandEnvironmentalEngineering,GeorgiaInstituteofTechnology,790AtlanticDr.,Atlanta,GA30332-0355.Note.ThismanuscriptwassubmittedonMarch19,2010;approvedonAugust2,2010;publishedonlineonOctober14,2011.DiscussionperiodopenuntilApril1,2012;separatediscussionsmustbesubmittedforindi-vidualpapers.ThispaperispartoftheJournalofBridgeEngineering,Vol.16,No.6,November1,2011.ASCE,ISSN1084-0702/2011/6-863871/$25.00.JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/863Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.VisitReliabilityBasesforBridgeLoadRatingBridgedesign,ascodifiedintheAASHTO-LRFDspecifications(2007),isestablishedbymodernprinciplesofstructuralreliabilityanalysis.Theprocessbywhichexistingbridgesareratedmustbeconsistentwiththoseprinciples.Uncertaintiesintheperfor-manceofanexistingbridgearisefromvariationsinloads,materialstrengthproperties,dimensions,naturalandartificialhazards,insufficientknowledge,andhumanerrorsindesignandconstruc-tion(Ellingwoodetal.1982;Galambosetal.1982;Nowak1999).Probability-basedlimitstatesdesign/evaluationconceptsprovidearationalandpowerfultheoreticalbasisforhandlingtheseuncertain-tiesinbridgeevaluation.ThelimitstatesforbridgedesignandevaluationcanbedefinedinthegeneralformGX01whereXX1;X2;X3;Xn=loadandresistancerandomvariables.Onthebasisofbridgeperformanceobjectives,theselimitstatesmayrelatetostrength(forpublicsafety)ortoexcessivedeformation,cracking,wearofthetrafficsurface,orothersourcesoffunctionalimpairment.Astateofunsatisfactoryperformanceisdefined,byconvention,whenGX0.Thus,theprobabilityoffailurecanbeestimatedasPfPGX0C138ZfXxdx2wherefXx=jointdensityfunctionofX;and=failuredomaininwhichGx0.Inmodernfirst-order(FO)reliabilityanalysis(Melchers1999),Eq.(2)isoftenapproximatedbyPfC03where=standardnormaldistributionfunction;and=reliabilityindex.Forwell-behavedlimitstates,Eq.(3)usuallyisanexcellentapproximationtoEq.(2),andandPfcanbeusedinterchangeablyasreliabilitymeasures(Ellingwood2000).WhenthefailuresurfaceinEq.(1)iscomplexorwhenthereliabilityofastructuralsystem,inwhichthestructuralbehaviorismodeledthroughfinite-elementanalysis,isofinterest,Eq.(2)canbeevalu-atedefficientlybyMonteCarlo(MC)simulation.TheAASHTOLRFDBridgeDesignSpecifications(2007)areestablishedonFOreliabilityanalysis,appliedtoindividualgirders(Nowak1999;KimandNowak1997;TabshandNowak1991).Withthesupportingprobabilisticmodelingofresistanceandloadterms(Nowak1993;BartlettandMcGregor1996;MosesandVerma1987),anexaminationofexistingbridgedesignpracticesledtoatargetreliabilityindex,equalto3.5basedona75-yearserviceperiod(Nowak1999,Moses2001).Consistentwithsuchreliability-basedperformanceobjective,theAASHTO-LRFDspec-ificationsstipulatethatinthedesignofnewbridges1:25D1:5DA1:75LIRn4whereD=deadloadexcludingweightofthewearingsurface;DA=weightofthewearingsurface(asphalt);(LI)representsliveloadincludingimpact;Rn=designstrength,inwhichRn=nominalresistance;and=resistancefactorwhichdependsontheparticu-larlimitstateofinterest.Thisequationisfamiliartomostdesigners.Whenthereliabilityofanexistingbridgeisconsidered,allow-anceshouldbemadeforthespecificknowledgeregardingitsstruc-turaldetailsandpastperformance.Fieldinspectiondata,loadtesting,materialtests,ortrafficsurveys,ifavailable,canbeutilizedtomodifytheprobabilitydistributionsdescribingthestructuralbehaviorandresponseinEq.(2).Themetricforacceptableperfor-manceisobtainedbymodifyingEq.(2)toreflecttheadditionalinformationgatheredPfPGX0jHC138PT5whereHrepresentswhatislearnedfromprevioussuccessfulperformance,in-serviceinspection,andsupportinginsitutesting,ifany.Thetargetprobability,PT,shoulddependontheeconomicsofrehabilitation/repair,consequencesoffutureoutages,andthebridgeratingsought.IntheAASHTO-LRFRmethod(2007),thetargetfordesignlevelcheckingbyusingHL-93loadmodel(atinventorylevel)is3.5,whichiscomparabletothereliabilityfornewbridges,whereasthetargetforHL-93operatinglevelandforlegal,andpermitloadsisreducedto2.5owingtothereducedloadmodelandreducedexposureperiod(5years)(Moses2001).ThepresenceofHinEq.(5)isaconceptualdeparturefromEqs.(2)and(3),whichprovidethebasisforLRFD.Forexample,trafficdemandsonbridgeslocatedindifferentplacesinthehigh-waysystemmaybedifferent.Totakethissituationintoaccount,LRFRintroducesasetoflive-loadfactorsforthelegalloadrating,whichdependontheinsitutrafficdescribedbytheaveragedailytrucktraffic(ADTT).Furthermore,thecomponentnominalresis-tanceinLRFRisfactoredbyasystemfactorsandamemberconditionfactorcinadditiontothebasicresistancefactorforaparticularcomponentlimitstate.Thesystemfactordependsontheperceivedredundancylevelofagivenbridgeinitsrating,whereastheconditionfactoristoaccountforthebridgessite-specificdeteriorationcondition,andpurportstoincludetheaddi-tionaluncertaintybecauseofanydeteriorationthatmaybepresent.ThebasisfortheLRFRtabulatedvaluesforcwillbefurtherexaminedlaterinthispaper.TheLRFRoptionintheAASHTOMBEextendsthelimitstatedesignphilosophytothebridgeevaluationprocessinanattempttoachieveauniformtargetlevelofsafetyforexistinghighwaybridgesystems.However,theuncertaintymodelsofloadandresistanceembeddedintheLRFRratingformatrepresenttypicalvaluesforalargepopulationofbridgesinvolvingdifferentmaterials,con-structionpractices,andsite-specifictrafficconditions.AlthoughtheLRFRlive-loadmodelhasbeenmodifiedforsomeofthespe-cificcasesasdiscussedpreviously,thebridgeresistancemodelshouldalsobe“customized”foranindividualbridgebyincorpo-ratingavailablesite-specificknowledgetoreflectthefactthateachbridgeisuniqueinitsas-builtcondition.Aratingprocedurethatdoesnotincorporateinsitudataproperlymayresultininaccurateratings(andconsequentunnecessaryrehabilitationorpostingcosts)forotherwisewell-maintainedbridges,asindicatedbymanyloadtests(NowakandTharmabala1988;BakhtandJaeger1990;Mosesetal.1994;FuandTang1995;Faberetal.2000;Barker2001;Bhattacharyaetal.2005).Improvementsinpracticalguidancewouldpermitthebridgeengineertoincludemoresite-specificknowledgeinthebridge-ratingprocesstoachieverealisticevalu-ationsofthebridgeperformance.Thisguidancemusthaveastruc-turalreliabilitybasis.ImprovementsinBridgeRatingbyUsingReliability-BasedMethodsInthissection,thebridgeratingsinlightofthereliability-basedupdatingofin-servicestrengthdescribedintheprevioussectionareexamined.Thepossibilitiesofincorporatingavailablesite-specificdataobtainedfrommaterialtests,loadtests,advanced864/JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.Visitstructuralanalysis,andsuccessfulserviceperformancetomakefur-therrecommendationsforimprovingratinganalysisareexplored.IncorporationofInSituMaterialTestingThecompanionpapersummarizedtheloadtestofBridgeID129-0045,areinforcedconcreteT-beambridgethatwasdesignedaccordingtotheAASHTO1953designspecificationforH-15loadingandwasconstructedin1957.Thespecified28-daycom-pressionstrengthoftheconcretewas17.2MPa(2,500psi),whereastheyieldstrengthofthereinforcementwas276MPa(40ksi).Thescheduleddemolitionofthisbridgeprovidedanop-portunitytosecuredrilledcorestodeterminethestatisticalproper-tiesoftheinsitustrengthofthe51-yearoldconcreteinthebridge.Four-inchdiameterdrilledcoresweretakenfromtheslabofthebridgebeforeitsdemolition.Sevencoresweretakenfromtheslabatsevendifferentlocationsalongboththelengthandwidthofthebridge.Coresalsoweretakenfromthreeofthegirdersthatwereingoodconditionafterdemolition;thesewerecutinto203mm(8-in.)lengthsandthejaggedendsweresmoothedandcapped,resultinginatotalof14girdertestcylinders.Testsofthese102203mm(48in.)cylindersconformedtoASTMStandardC42(ASTM1995)andtheresultsarepresentedinTable1.Ananalysisofthesedataindicatednostatisticallysignificantdifferenceintheconcretecompressionstrengthinthegirdersandslab,andthedatawerethereforecombinedforfurtheranalysis.Themean(average)com-pressionstrengthoftheconcreteis33MPa(4,820psi)andthecoefficientofvariation(COV)is12%,whichisrepresentativeofgood-qualityconcrete(BartlettandMacGregor1996).Themeanstrengthis1.93timesthespecifiedcompressionstrengthofthecon-crete.Thisincreaseincompressionstrengthoveraperiodofmorethan50yearsistypicaloftheincreasesfoundforgood-qualitycon-cretebyotherinvestigators(WashaandWendt1975).Iftheseresultsaretypicalofwell-maintainedolderconcretebridges,theinsituconcretestrengthislikelytobesubstantiallygreaterthanthe28-daystrengththatiscustomarilyspecifiedforbridgedesignorconditionevaluation.Accordingly,thebridgeen-gineershouldbeprovidedincentivesintheratingcriteriatorateabridgebyusingthebestpossibleinformationfrominsitumaterialstrengthtestingwheneverfeasible(Ellingwoodetal.2009).Itiscustomarytobasethespecifiedcompressionstrengthofconcreteonthe10thpercentileofanormaldistributionofcylinderstrengths(Standard318-05;ACI2005).Asuitableestimateforthis10thper-centilebasedonasmallsampleofdataisprovidedbyfcC22X1C0kV6whereC22X=samplemean;V=samplecoefficientofvariation;andkp%lowerconfidenceintervalonthe10thpercentilecompres-sionstrength.Byusingthe21testsfromBridgeID129-0045withp%75%asanexample,k=1.520(Montgomery1996)andfccanbeexpressedasfc11:5200:124;8203;941psi(27.17MPa),avaluethatis58%higherthanthe17.2MPa(2,500psi)thatotherwisewouldbeusedintheratingcalculations.IntheFEmodelingofthisbridgethatprecededthesestrengthtests,theconcretecompressionstrengthwassetat17.2MPa(2,500psi),whichwastheonlyinformationavailablebeforethematerialtest.Todeterminetheimpactofusingtheactualconcretestrengthinanolderbridgeontheratingprocess,thefinite-elementmodelwasrevisedtoaccountfortheincreasedconcretecompres-sionstrength(andthecorrespondingincreaseinstiffness)intotheanalysisofthebridge.Onlyamodestenhancementintheestimatedbridgecapacityinflexurewasobtained,buta34%increasewasachievedintheshearcapacityratingsforthegirdersbyusingtheresultsofTable1.BridgeSystemReliabilityAssessmentontheBasisofStaticPush-DownAnalysisAlthoughcomponent-baseddesignofanewbridgeprovidesad-equatesafetyatreasonablecost,component-basedevaluationofanexistingbridgeforratingpurposesmaybeoverlyconservativeandresultinunnecessaryrepairorpostingcosts.Itispreferabletoperformloadratingregardingbridgepostingorroadclosurethroughasystem-levelanalysis.Aproperlyconductedproofloadtestcanbeaneffectivewaytolearnthebridgesstructuralperfor-manceasasystemandtoupdatethebridgeloadcapacityassess-mentinsituationsinwhichtheanalyticalapproachproduceslowratings,orstructuralanalysisisdifficulttoperformbecauseofdeteriorationorlackofdocumentation(SarafandNowak1998).However,aproofloadtestrepresentsasignificantinvestmentincapital,time,andpersonnel,andthetrade-offbetweentheinforma-tiongainandtheriskofdamagingthebridgeduringthetestmustbeconsidered.ProoftestsarerarelyconductedbythestateDOTs(Wangetal.2009)forratingpurposes.Oneofthekeyconclusionsfromthecompanionpaper(Wangetal.2011),inwhichbridgeresponsemeasurementsobtainedfromtheloadtestsofthefourbridgeswerecomparedwiththeresultsoffinite-elementanalysesofthosebridgeswithABAQUS(2006),wasthatthefinite-elementmodelingprocedurewassufficientforconductingvirtualloadtestsofsimilarbridges.Thesevirtualloadtestscanprovidethebasisfordevelopingrecommendationsforimprovingguidelinesforbridgeratingsbyusingstructuralreli-abilityprinciples.Asnotedintheintroductorysection,suchguide-linesrequirethebridgetobemodeledasastructuralsystemtoproperlyidentifytheperformancelimitstatesonwhichsuchguide-linesaretobebased.Toidentifysuchperformancelimitstatesandtogainarealisticappraisaloftheconservatisminherentincurrentbridgedesignandconditionratingprocedures,aseriesofstaticpush-downanalysesofthefourbridgeswasperformed.Theseanalysesareaimedatdeterminingtheactualstructuralbehavioroftypicalbridgeswhenloadedwellbeyondtheirdesignlimit;asasidelight,theyprovideadditionalinformationtosupportrationalevaluationofpermitloadapplications(section6A.4.5intheManualofBridgeEvaluation).Inapush-downanalysis,tworatingvehiclesareplacedside-by-sideonthebridgeinapositionthatmaximizestheresponsequan-tityofinterestintheevaluation(e.g.,maximummoment,shear,anddeflection).Theloadsarethenscaledupwardstaticallyandtheper-formanceofthebridgesystemismonitored.Thedeadweightofthebridgestructureisincludedintheanalysis.Theresponseisinitiallyelastic.Asthestaticloadincreases,however,elementsofthebridgestructurebegintoyield,crack,orbuckle,andthegeneralizedload-deflectionbehaviorbecomesnonlinear.Ifthebridgestructureisredundantandthestructuralelementbehaviorsareductile,substan-tialloadredistributionmayoccur.Atsomepoint,however,asmallincrementinstaticloadleadstoalargeincrementindisplacement.Atthatpoint,thebridgehasreacheditspracticalload-carryinglimit,andisatastateofincipientcollapse.Table1.CompressionTestsof48in:CoresDrilledfromRCConcreteBridge(ID129-0045)SourceNumberAverage(psi)Standarddeviation(psi)CoefficientofvariationGirder144,8806030.12Slab74,6985730.12Overall214,8205860.12Note:1psi6:9Pa.JOURNALOFBRIDGEENGINEERINGASCE/NOVEMBER/DECEMBER2011/865Downloaded21Mar2012to3.RedistributionsubjecttoASCElicenseorcopyright.VisitThestaticpush-downanalysisisillustratedinFig.1fortheRCT-beambridge(ID129-0045).TheFEmodelingwasperformedwithABAQUS(2006),withrandommaterialpropertiesdeterminedbytheirrespectivemeanvalues.Thepointofinitialyieldingoccursatapproximately4.31timestheHS20-44designloadconfigura-tion,atadeflectionofapproximately36mm(1.4in.),whichisequaltoapproximately1=345timesthespan.Theultimatelive-loadcapacityofthebridgeisapproximately4.8timestheappliedHS20-44loads.FromFig.1,this52-year-oldbridgeshowsacon-siderabledegreeofductilityinbehavior.ThelevelofloadimposedbythefourfullyloadedtrucksduringtheloadtestdescribedinthecompanionpaperisalsoshowninFig.1;thetestload(inmaximumgirdermoment)wasapproximately1.3timesthetwoside-by-sideHS20-44loads.Thecapacityofthisbridgesystemissubstantiallyinexcessofwhatagirder-basedcalculationwouldindicate.Similarpush-downanalyseswereperformedontheotherbridgesdescribedinthecompanionpaper,yieldingtheresultssummarizedinTable2.Theelasticrangesofallfourbridgesareinexcessof4timesthedesignloadlevel,indicatingthelevelofconservatismassociatedwithtraditionaldesignandratingprocedures.AspartoftheefforttodeveloptheAASHTOLRFDBridgeDesignSpecifications,extensivedatabasesweredevelopedtodescribethestrengthofindividualbridgegirdersandvehicleliveloadsprobabilistically(Nowak1999;Moses2001).(TheHL-93live-loadmodelisanoutgrowthofthispreviousresearch.)Thatresearchfocusedonthecapacityofindividualbridgegirders;sys-temeffectswereincludedindirectlyandapproximatelythroughnewgirderdistributionfactorsthatweredevelopedinthecourseoftheproject.Thecapacityofabridgestructuralsystemislikelytobedifferentfromthecapacitypredictedfromananalysisofindi-vidualgirders.Todeterminetheadditionallevelofconservatism(ifany)thatarisesfromsystembehavior,afinite-element-basedsystemreliabilityanalysisofallfourstudybridgeswasconducted.Thissystemreliabilityanalysisprovidesadditionalperspectiveonthe(unknown)levelofconservatismfurnishedbythecurrentgenerationofreliability-basedconditionevaluationandratingpro-ceduresembodiedintheAASHTOManualforBridgeEvaluati

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论